
⑪
~

Scapegoat Trees: - S Recap: Example: k =6

- Arne Anderson (1989) - Seen many search trees 06 - sales
- Galperin - Rivest (1993) - Restructure via rotation

rediscovered/extended - Today:Restructure via ⑲
- Amortized analysis rebuilding g

=(4):
3)- Sometimes rotationnot·

olognetodictionre possible
Iguaranteed for find). - Better men. Usage

-abhimand SetTrees GDYSO- rebuild it

Overview:
Insert: E 3 How to rebuild? of
- same as standard BST
ifdepth too high ~

Delete:
↓

rebuild oras- trace search path - Same as std. BST i
back -Inum. of deletes is - buildsubtree (D)

- find unbalanced largertire Free! build subtree (A[0..K-1]):
node-scapegoat - if =0 return null

- rebuild this subtree How?Maintain n, ms o -j =(k/z);x =A(j] median
Find: Same as std BST

I

sert:n++,m++

-Tree height logsIgn Delete:n-- ...If I ibinnin
m > zn rebuild
-)@Z·
urn Node(x, L,R)



- ~

⑬ insert(s)
- -SI insertan - Details ofOperations:

S
Example:B ........

⑭g- same as std BST but ⑨
keep track of inserted Delegame

as std BST
④

node's depthed

i
- nt+;m++

S...

/fit:
2xmso rootionall

%18- if (d> logs,m) S - n- ⑧
Arebuild event*/ ifbidrot)

-

trace path back to ↓

0(n)
iroot Time: I

- for each node p
visited, sizelph-no. of Steendepth

..... Jalgefll!
of

birgor Must there be a site
Proof:By contradiction?

size(p)
scapegoat? Yes! -Suppose p's depth log

but Vancestors
I

oakscapegoat GemmaGivenabinarysoot, Sizeluchilee↳

↳ size 2/3size (n)
- V??How to compute size (p)? I node p of depth - -- =>Since p has

- Can compute iton the fly an I node:
-
While backing out, traverse B : 3size(p)?)
"other sibling

nenoseassigitencestor
i · =>((z)=n

- Too slow?No!
-> charge to rebuild. dlogs" p

n => de logs



- ~

Theorem:Starting with an
PS

Amortized Analysis: Therefore - Node u has collected

empty tree, any seg. of K -Tree height is OClogn) at least 4 size (n)-1 tokens.
inserts + deletes takes total [since we rebuild whenever higher) Since ittakes O(size(n)) time to
of OCK log() time. =>find is OClogn) even in worstcase rebuild u, itfollows that

- But insert a delete can take up Cup to adjusting constants) we
corollary:Amortized time is to 0(n) time (if entire tree have enough tokens to pay for
OClogk) is rebuilt) rebuild. I

&

· -

- 28
IProof: Token-based argument :
-he last time a subtree containing

Overview: u was rebuilt, it was perfectbalanced
- We will assign tokens to Satiea Catattime

Size (n.left)-size(n.right). I
nodes of tree
- Add some tokens "on theside" This implies that since last rebuild, we
- Will show had atleast
-Total tokens =O(kloyk) Claim:There are always enough ↳ size (u)-1

inserts/deletes
&

·

S
- Enough tokens to pay s tokens to payfor rebuilding. a implies:"volvinga. L

fr for all rebuildings Proof: 3
9

Token assignment: If we call buildsubtree (n), we Yz size (n.left) size (right)
- Whenever we insert/delete, know his a scapegoat. Assume ->

add a token to each node visited w.l.o.g. that: Size(u.left) -size (n.right)
in the search Size(u.left) 3 size (n. left)

- During each deletion - add b size (u) >Y3 size(u)

token "on the side"
- By height bound-Olklogk) tokens total.

By def:size(n)=1size(nleft)- Size (u.right)


