Scapegoat Trees:
- Arne Anderson (1989)
- Galperin & Rivest (1993) rediscovered/extended
- Amortized analysis
 - $O(\log n)$ for dictionary ops amortized (guaranteed for find)
- Just let things happen
- If subtree unbalanced
 - rebuild it

Recap:
- Seen many search trees
- Restructure via rotation
- Today: Restructure via rebuilding
- Sometimes rotation not possible
- Better mem. usage

Overview:
Insert:
- Same as standard BST
 - if depth too high
 - trace search path back
 - find unbalanced node—scapegoat
 - rebuild this subtree

Find:
Same as std BST
- Tree height $\leq \log_{3/2} n \approx 1.71 \log n$

Delete:
- Same as std. BST
- If num. of deletes is large rel. to n—rebuild entire tree!

How to rebuild?
rebuild(p):
- inorder traverse p's subtree → array $A[]$
 - buildSubtree(A)
 - $\text{buildSubtree}(A[0..k-1])$
 - if $k = 0$ return null
 - $j \leftarrow \lfloor k/2 \rfloor$; $x \leftarrow A[j]$ median
 - $L \leftarrow \text{buildSubtree}(A[0..j-1])$
 - $R \leftarrow \text{buildSubtree}(A[j+1..k-1])$
 - return Node(x, L, R)

Example:
\[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
p: & b & \rightarrow & a & c & e & d & f \\
L & d & \rightarrow & a & b & c & e & f \\
\end{array}\]

Time $= O(k)$

Node(x, L, R)
Insert:
- \(n++ \); \(m++ \)
- Same as std BST but keep track of inserted node’s depth \(d \)
- if \(d > \log_{3/2} m \) \{
 * rebuild event *
- trace path back to root
- for each node \(p \) visited, size \(p \) = no. of nodes in \(p \)’s subtree
- if \(\frac{\text{size}(p, \text{child})}{\text{size}(p)} > \frac{2}{3} \)
 \(p \leftarrow \text{rebuild}(p) \)
- break

How to compute size \(p \)?
- Can compute it on the fly
- While backing out, traverse “other sibling”
- Too slow? No!
 \(\Rightarrow \) Charge to rebuild.

Details of Operations:
- Init:
 \(n \leftarrow m \); \(root \leftarrow \text{null} \)
- Delete:
 - Same as std BST
 - \(n-- \)
 - if \(m > 2n \), \(\text{rebuild}(\text{root}) \)

Example:

Scapegoat Trees

Must there be a scapegoat? Yes!

Proof: By contradiction
- Suppose \(p \)’s depth \(> \log_{3/2} n \) but \(\forall \) ancestors of \(p \) that satisfies scapegoat condition

Lemma: Given a binary tree with \(n \) nodes, if \(\exists \) node \(p \) of depth \(> \log_{3/2} n \), then \(\exists \) ancestor of \(p \) that satisfies scapegoat condition
Theorem: Starting with an empty tree, any seq. of \(k \) inserts + deletes takes total of \(O(k \log k) \) time.

Corollary: Amortized time is \(O(\log k) \)

Proof: Token-based argument

Overview:
- We will assign tokens to nodes of tree
- Add some tokens "on the side"
- Will show:
 - Total tokens = \(O(k \log k) \)
 - Enough tokens to pay for all rebuildings

Token assignment:
- Whenever we insert/delete, add a token to each node visited in the search
- During each deletion - add 1 token "on the side"
- By height bound - \(O(k \log k) \) token total.

Amortized Analysis:
- Tree height is \(O(\log n) \)
 - [since we rebuild whenever higher]
 \(\Rightarrow \) find is \(O(\log n) \) even in worst case
- But insert + delete can take up to \(O(n) \) time (if entire tree is rebuilt)

Therefore - Node \(u \) has collected at least \(\frac{1}{2} \) \(\text{size}(u) - 1 \) tokens

Since it takes \(O(\text{size}(u)) \) time to rebuild \(u \), it follows that (up to adjusting constants) we have enough tokens to pay for rebuild.

The last time a subtree containing \(u \) was rebuilt, it was perfect balanced
\(\Rightarrow \) \(\text{size}(u \text{left}) - \text{size}(u \text{right}) \leq 1 \)
(at that time)

This implies that since last rebuild, we had at least \(\frac{1}{3} \) \(\text{size}(u) - 1 \) inserts/deletes involving \(u \).

This implies:
\[
\frac{1}{2} \text{size}(u \text{left}) > \text{size}(u \text{right})
\]
\[
\Rightarrow \text{size}(u \text{left}) - \text{size}(u \text{right}) > \frac{1}{2} \text{size}(u \text{left})
\]
\[
> \frac{1}{3} \text{size}(u)
\]

Claim: There are always enough tokens to pay for rebuilding.

Proof:
If we call buildSubtree \((u) \), we know \(u \) is a scapegoat. Assume w.l.o.g. that:
\[
\frac{\text{size}(u \text{left})}{\text{size}(u)} > \frac{2}{3}
\]
By def: \(\text{size}(u) = \text{size}(u \text{left}) + \text{size}(u \text{right}) \)

Scapegoat Trees

III

II

I

\(\implies \)