False Positive: We report io Filtering:
$x \in X$, but it is not
False Negative: We report $x \notin X$, but it is

We will tolerate false positives (very few) but no false negatives

Examples:
$X=\{$ weak passwords $\}$
\rightarrow Screen passwords for safety

- Allow no weak passwords
- May flag a few good passwords as being weak
$X=$ \{URL's of malicious webs sites $\}$
\rightarrow Allow no malicious sites
- May flag a few safe ones

Bloom Filter:
-1970 by Burton Howard Bloom

- Can store very large sets X
- Answas queries in $O(1)$ time
- Uses $O(n)$ bits - $n=|X|$
(may be smaller than space needed to store all keys!)
find ($\left.K_{\text {ley }} x\right)$)

$$
\operatorname{for}(i=1,2, \ldots, k) \xi
$$

$$
\left[\text { if }\left(B\left[h_{i}(x)\right]=0\right)\right. \text { return false }
$$

return true
find ("b") $h_{i}(b)=[2,3,7] \Rightarrow$ true
find $(" c ") h_{i}(c)=[2,5,9] \Rightarrow$ false
find ("d") $h_{i}(d)=[0,4,7] \Rightarrow$
Example:

insert ("a") $\quad h_{i}(a)=[0,7,4]$
insert ("b") $h_{i}(b)=[2,3,7]$
(all other entries 0)
Let $X \subseteq U$ (universe) $|X|=n$ large!
Parameters: $k, m-T B D$
Bit Vector: $B[0 \ldots m-1]$
k Hash Functions: h_{1}, \ldots, h_{k}
$h_{i}: U \rightarrow\{0, \ldots, m-1\}$
[Think: hi maps keys to random locations in bit vector]

Initially: $B[i]=0, i=0, \ldots, m-1$ \}

$$
\text { insert }(\text { key } x)\{
$$

for $(i=1,2, \ldots, k)$ $\left[B\left[h_{i}(x)\right] \leftarrow 1\right.$

Controlling False Positives:
Obs
m-Bigger is better
(but more storage)
k - Trickier to balance
Math Facts:
(1) If $|z|$ is small, $1+z \approx e^{z}$ be set to 1 by other key.
(2) If an event occurs w probability P, the prob. of l independent occurrences is p^{l}.
Analysis:
Assume: $n=|X|, m=|B|, k=n o$ hashes

- Prob of hitting an arbitrary loc. of $B, B[j]$, with any hash is $1 / \mathrm{m}$.
- Prob of missing is $1-1 / \mathrm{m}$. So:

$$
\operatorname{Pr}\left(h_{i}(x) \neq j\right)=1-1 / m
$$

- After inserting all n keys, each with k hashes, prob of missing $B[j]$ is:

$$
\operatorname{Pr}(B[j]=0)=(1-1 / m)^{k \cdot n}
$$

- Assuming m large $\Rightarrow 1^{1 / m} /$ small \Rightarrow

$$
\begin{aligned}
\operatorname{Pr}(B[j]=0) & \approx\left(e^{-1 / n}\right){ }^{k \cdot n} \\
& =e^{-k n / m}
\end{aligned}
$$

S^{2} Partial Correctness:

- If $x \in X$, all hash locations
$B\left[h_{i}(x)\right]$ set to $1 \Rightarrow$ true
- If $X \notin X$, if any hash loo.
$B\left[h_{i}(x)\right]$ is $0 \Rightarrow f$ false
\rightarrow But by coincidence, all may

Define: $p=e^{-k}$
(Later, well show best $p=1 / 2$)
-Prob. that any entry $B[j]=0$ is $p \Rightarrow$ Expected nom. of O^{\prime} is $m p$

- Useful fact from prob. theory (Concentration about mean)
- If m large - actual hum of O'S is very nearly m.P.

In summary: $\operatorname{Pr}[F p]=\left(\frac{1}{2}\right)^{(\ln 2)^{\frac{m}{n}}}$
To achieve a false pos. rate of $\delta>0$ set $m=\frac{\lg 1 / 5}{\ln 2} \cdot n$
Equiv: Rum of bits per key is

$$
\frac{m}{n} \approx \frac{\lg 1 / \delta}{\ln 2}=O(\log 1 / \delta)
$$

False Positive Probability

- False positive (FP) occurs if all $h_{i}(x)$ set to 1 by other leys
- Since prob $B[j]=0$ is p, we have $\operatorname{Pr}[F P]=\operatorname{Pr}\left[\left\{\mathbb{B}\left[h_{i}(x)\right]=1\right\}_{i=1}^{k}\right]$

$$
=(1-p)^{k}
$$

- To simplify -Take ln $\ln (\operatorname{Pr}[F p])=k \cdot \ln (1-p)$
- By deft. of p, we have:

$$
\begin{aligned}
& \ln p=-k n / m \Leftrightarrow k=-\frac{m}{n} \ln p \\
& \Rightarrow \ln (P r[p p])=-\frac{m}{n} \ln p \cdot \ln (1-p)
\end{aligned}
$$

- How to set k to minimize this?
- Assume m, n fixed, but p varies
$-\ln p \cdot \ln (1-p) \rightarrow \underbrace{}_{\text {min }}$
$-\operatorname{Set} p=1 / 2$
$\Rightarrow \operatorname{Pr}[F P]=(1-p)^{k}=(1 / 2)^{(\ln 2) \frac{m}{n}} \underset{\approx}{\approx}(0.618)^{m / n}$

