
CMSC416: Introduction to Parallel Computing 
 

Topic: Advanced MPI 
Date: February 13, 2024 
 
 

Background 
In parallel programming, there are two methods to parallelize a program: threads and processes. 
The main difference between the two is that different threads share the same resource space, 
while processes each have their own individual resource space. As a consequence, separate 
threads are able to access relevant data directly, while processes must send and receive relevant 
data. Although this does not make threads inherently better (different problems have different 
requirements and hardware constraints), using processes to solve your problem requires more 
deliberate attention to the transfer of data. 
 
Message Passing Interface (MPI) is an interface standard that allows processes to pass data 
between each other. There are many open-source implementations of this, such as MPICH, 
MVAPICH, and OpenMPI. Going forward, we will focus on the implementations that exist in 
OpenMPI. 
 
Previously, we discussed two functions in OpenMPI – MPI_Send(...) and MPI_Recv(...) – that 
allow processes to communicate data with each other. These are blocking calls made during 
point-to-point operations.  
 
There are two main issues with these calls due to these functions being blocking: 

1. If two processes are trying to communicate to each other and both decide to call 
MPI_Send(...) before calling MPI_Recv(...), there will be a deadlock as MPI_Send(...) 
never finishes, and the program will hang. 

2. If MPI_Recv(...) is called and a process has yet to receive data, it may have non-blocking 
operations that it could have spent time computing, but it couldn’t because MPI_Recv(...) 
is a blocking call. IMPORTANT: This is not a logistical issue, but rather an efficiency 
issue. 

 
The first problem can be solved by making sure that communicating processes call 
MPI_Send(...) and MPI_Recv(...) in different orders. This requires deliberate care and may be 
difficult to implement in some situations, but it is doable. 
 
The second problem, however, cannot be solved if processes use MPI_Send(...) and 
MPI_Recv(...). In this section, we will be introducing new non-blocking functions in OpenMPI – 



MPI_Isend(...) and MPI_Irecv(...) – to circumvent this problem. We will also explore other 
methods of communicating data to processes via collective operations. 

New OpenMPI Functions 

MPI_Isend(...) 
This is the non-blocking version of MPI_Send(...). Many of its parameters mirrors that of 
MPI_Send(...), except for the inclusion of “MPI_Request *request”, which is needed in 
MPI_Wait(...); it’s possible to have multiple MPI_Isend so request lets MPI_Wait(...) know 
which it should apply to. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Isend( const void *buf, int count, MPI_Datatype datatype, int dest, int tag, 
MPI_Comm comm, MPI_Request *request ) 
 
buf: address of send buffer  
count: number of elements in send buffer  
datatype: datatype of each send buffer element  
dest: rank of destination process  
tag: message tag  
comm: communicator  
request: communication request 

MPI_Irecv(...) 
This is the non-blocking version of MPI_Recv(...). Many of its parameters mirrors that of 
MPI_Recv, except for the inclusion of “MPI_Request *request”, which is needed in 
MPI_Wait(...); it’s possible to have multiple MPI_Irecv so request lets MPI_Wait(...) know 
which it should apply to. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int source, int tag, 
MPI_Comm comm, MPI_Request *request )  
 
buf: address of receive buffer  
count: maximum number of elements in receive buffer  



datatype: datatype of each receive buffer element  
source: rank of source process  
tag: message tag  
comm: communicator  
request: communication request 

MPI_Wait(...) 
This is a blocking call that you put after MPI_Isend(...) or MPI_Irecv(...) after you have 
completed non-blocking operations to ensure blocking operations can safely be executed. 
Sometimes, MPI_Wait(...) is omitted after MPI_Isend(...), but for the sake of complete 
correctness, it should be included. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Wait( MPI_Request *request, MPI_Status *status ) 
 
request: communication request  
status: status object 

 
“MPI_Status *status” gives additional information about the function call, such as whether there 
was an error. Although production-grade code should utilize this information in case of potential 
unforeseen errors, you may ignore this parameter using MPI_STATUS_IGNORE. 

MPI_Waitall(...) 
MPI_Waitall(...) is an alternative to calling chained multiple MPI_Wait(...) that you want to run 
in case you made multiple MPI_Isend(...)/MPI_Irecv(...) calls. Uses array_of_requests[] which 
holds an array of requests, to know what MPI_Isend(...)/MPI_Irecv(...) calls to apply 
MPI_Waitall(...) to.  

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Waitall( int count, MPI_Request array_of_requests[], MPI_Status 
*array_of_statuses[] ) 
 
count: length of array_of_requests[] 
array_of_requests[]: array of requests 
array_of_statuses[]: array of status object 

 



MPI_Test(...) 
This is the non-blocking version of MPI_Wait(...). Later in this section, we will explain how this 
can improve efficiency in a program over MPI_Wait(...). 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Test( MPI_Request *request, int *flag, MPI_Status *status ) 
 
request: communication request  
flag: operation completion state 
status: status object 

MPI_Waitany(...) 
This takes in a list of requests and waits until one of the specified requests completes. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Waitany( int count, MPI_Request array_of_requests[], int *indx, MPI_Status * 
status ) 
 
count: length of array_of_requests[] 
array_of_requests[]: array of requests 
indx: index of request in array_of_requests that completed first 
status: array of status object 

MPI_Waitsome(...) 
This takes in a list of requests and waits for some of the specified requests to complete, providing 
details on completed requests along the way. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Waitsome( int incount, MPI_Request array_of_requests[], int *outcount, 
                 int array_of_indices[], MPI_Status *array_of_statuses ) 
 
incount: length of array_of_requests[] 
array_of_requests[]: array of requests 
outcount: count of completed requests 



array_of_indices: array of indices of requests in array_of_requests[] that have completed 
array_of_statuses: array of status object 

Structure Between MPI_Isend(...)/MPI_Irecv(...) & 
MPI_Wait(...)/MPI_Test(...) 
Before we continue on, it is important to understand how the new functions we have introduced 
work together. In a typical MPI program, you will likely see these functions used a structure 
similar to this: 
 

MPI_Isend(...)/MPI_Irecv(...) 
 
// non-blocking operations 
 
MPI_Wait(...)/MPI_Test(...) along with appropriate flag handling code 
 
// operations that require MPI_Isend(...)/MPI_Irecv(...) to complete 

 
IMPORTANT: It’s possible to have nothing in the non-blocking operations, however, doing so 
defeats the purpose of using non-blocking functions MPI_Isend(...)/MPI_Irecv(...). In that case, 
you may want to consider simply using blocking functions MPI_Send(...) and MPI_Recv(...). 

Example 
Previously, we covered how we would use MPI_Send(...) and MPI_Recv(...) on a 2D stencil 
computation. Let’s use a 2D stencil computation to see how these new functions work in 
practice. NOTE: There are simplifications within the code example to make this example easier 
to understand. 
 
Consider this 2D stencil: 

 
 



In this 2D stencil that is 16 X 16, there are 16 rows of data (N) being divided among 4 processes 
(p), or N/p; this equates to 4 rows per process (numbered 0…n-1). For every computation, every 
cell requires its neighboring cells to determine its new cell; this yields the need to communicate 
with ghost cells (purple) via MPI if neighboring cells are in a different process. In this particular 
2D stencil, every process must communicate with two other processes – the one “above” it and 
the one “below” it with two MPI_Isend(...) and two MPI_Irecv(...). Assuming a priori wrap-
around, the top-most and bottom-most processes will communicate with each other in addition to 
their direct neighboring process. 
 
IMPORTANT: Make sure you know if your programming language stores matrix elements in 
row-major order (row elements stored contiguously in memory) or column-major order 
(column elements stored contiguously in memory). In the code examples below, we assume row-
major ordering since C uses row-major order. If you use a programming language like Fortran, 
which uses column-major ordering, be sure to copy row elements into a column array before 
passing data along.  
 
Here is a simplified naive version of how computations might be done: 
 

int main(int argc, char *argv) {  
...  
MPI_Comm_rank(MPI_COMM_WORLD, &rank);  
 
MPI_Irecv(&data1, 16, MPI_DOUBLE, (rank-1)%4, 0, ...);  
MPI_Irecv(&data2, 16, MPI_DOUBLE, (rank+1)%4, 0, ...);  
 
MPI_Isend(&data3, 16, MPI_DOUBLE, (rank-1)%4, 0, ...);  
MPI_Isend(&data4, 16, MPI_DOUBLE, (rank+1)%4, 0, ...);  
 
MPI_Waitall(…); 
 
compute();  
 
...  

} 
 

Upon inspection, two things might stand out in this code: 
1. MPI_Irecv(...) is called before Isend(...) 
2. There are no non-blocking operations being called i.e. compute() is run only after 

MPI_Waitall(...) 
 



The first notable detail is actually not an issue. While using MPI_Send(...) and MPI_Recv(...) in 
this way would result in a deadlock, MPI_Isend(...) and MPI_Irecv(...) are non-blocking calls, so 
no deadlock will occur. If anything, this might actually optimize your code because if you called 
MPI_Isend(...) first, the receiving process may have not called MPI_Irecv(...) and would not be 
able to receive relevant data when available; calling MPI_Irecv(...) first ensures that data from 
MPI_Isend(...) are received as soon as possible. 
 
The second issue, while not program breaking, defeats the purpose of using non-blocking calls 
MPI_Isend(...) and MPI_Irecv(...) as opposed to just their blocking function call counterparts. 
This is because no non-blocking operations are computed between MPI_Isend(...)/MPI_Irecv(...) 
and MPI_Waitall(...). 
 
Although it would be nice to simply put compute() before the MPI_Waitall(...), there are 
complications that arise; while this would be fine for the middle 2 rows ((N/p) - 2) in each 
process that has all the data it needs within its own process, this would be a problem for the ghost 
cells since these cells rely on having received data from neighboring ghost cells to finish their 
respective computations. To solve this problem we can modify our program to compute the 
middle rows in each process as the non-blocking operation and the ghost rows after Waitall(...). 
 
Here is what the modification would look like: 
 

int main(int argc, char *argv) {  
...  
MPI_Comm_rank(MPI_COMM_WORLD, &rank);  
 
MPI_Irecv(&data1, 16, MPI_DOUBLE, (rank-1)%4, 0, ...);  
MPI_Irecv(&data2, 16, MPI_DOUBLE, (rank+1)%4, 0, ...);  
 
MPI_Isend(&data3, 16, MPI_DOUBLE, (rank-1)%4, 0, ...);  
MPI_Isend(&data4, 16, MPI_DOUBLE, (rank+1)%4, 0, ...);  
 
compute_middle_rows(); 
 
MPI_Waitall(…); 
 
compute_ghost_rows();  
...  

} 
 



From here, we might be tempted to use MPI_Wait(...) after both MPI_Irecv(...) and do ghost row 
computations before calling MPI_Isend(...) since MPI_Isend(...) won’t affect computations 
within current process. Doing this naively would lead to MPI_Isend(...) sending overwritten data 
to neighboring processes. In order to resolve this, we could copy over the values at ghost rows to 
new variables and pass that instead so overwritten data won’t get passed in MPI_Isend(...). This 
would potentially improve runtime (assuming speed of copies are fast) at the cost of some 
memory overhead. 
 
Here is a possible implementation of this strategy: 
 

int main(int argc, char *argv) {  
...  
MPI_Comm_rank(MPI_COMM_WORLD, &rank);  
 
MPI_Irecv(&data1, 16, MPI_DOUBLE, (rank-1)%4, 0, ...);  
MPI_Irecv(&data2, 16, MPI_DOUBLE, (rank+1)%4, 0, ...);  
 
compute_middle_rows(); 

 
MPI_Wait(...) // for data1 
// variable that holds copy of data3 in copy_data3 
 
compute_top_ghost_row(); // this would overwrite data3, hence why need to pass 
in copy_data3 to subsequent calls 
 
MPI_Wait(...) // for data2 
// variable that holds copy of data4 in copy_data4 
 
compute_bottom_ghost_row(); // this would overwritedata4, hence why need to 
pass in copy_data4 to subsequent calls 
 
MPI_Isend(&copy_data3, 16, MPI_DOUBLE, (rank-1)%4, 0, ...);  
MPI_Isend(&copy_data4, 16, MPI_DOUBLE, (rank+1)%4, 0, ...);  

 
MPI_Waitall(…); // For sends 
...  

} 
 
Believe it or not, there are still ways to potentially improve the efficiency of the program. Recall 
that MPI_Wait(...) is a blocking call; what would happen if data2 is available before data1 in the 



code above? In this case, data2 would not be able to be processed and data1 would also not be 
able to be processed since it hasn’t been received yet, leading to the program being idle until 
data1 is received. A solution to this would be using a non-blocking call MPI_Test(...) for each 
respective MPI_Irecv(...) call and using the flag property to determine which ghost cell to 
process first based on which data is received first.  
 
Throughout this example, we were able to reason through the problem and make adjustments to 
incrementally improve the efficiency of the program. This process of analysis and reiteration is 
typical practice when designing parallel programs. As an exercise, I implore you to think about 
other ways to further improve this program or alternative methods to achieve similar results. 

Collective Operations 
So far, we have been looking at point-to-point operations, where pairs of processes communicate 
with each other. We will now examine how we can use collective operations to interact with all 
processes within a communicator. First, let's get a better understanding of MPI communicators. 
 
MPI communicators are groups (each with a uniquely assigned tag), created by the MPI runtime 
that hold a set of processes numbered 0…n-1. In many cases and examples we have used, we 
have defaulted to MPI_COMM_WORLD which is the default global communicator, commonly 
referred to as the global rank as it contains all processes in a program. However, you are not 
limited to this global communicator, and can create sub-communicators via functions 
MPI_Comm_split, MPI_Cart_create, MPI_Group_incl. Why would you want to do this? In the 
case of a 2D stencil that is 2D decomposed, you may want to do this as an easy way to share data 
among processes in a row by assigning each row its own sub-communicator. 

Collective Operation Functions 
Now that we understand what MPI Communicators are, let’s explore some of the common 
functions used to interact with processes within communicators. 

MPI_Barrier(...) 
This function is used as a synchronization point, blocking all processes within a communicator 
until they have reached this routine. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Barrier( MPI_Comm comm) 



MPI_Bcast(...) 
This function broadcasts data from the root to all processes within the communicator. Note that 
individual processes do not need to call any receive functions to get broadcasted data. 

Function Signature (Courtesy of Abhinav Bhatele Notes): 
int MPI_Bcast( void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm 
comm ) 

 
 
 


