
CMSC416: Introduction to Parallel Computing 
 
Topic: Advanced MPI 
Date: 02/15/2024 
 
Waiting for MPI Requests: 

- The MPI_Request object is opaque, resides in the MPI system memory, and is 
managed by MPI. 

- It is associated with a particular communication operation, and it links a posted 
non-blocking operation to its completion. 

- To use it, we declare an MPI_Request object and send a pointer to it as an 
argument to MPI routines. 

 
Other MPI Calls: 

- MPI_Test returns immediately and sets the parameter flag to true if the parameter 
request has completed. 

- MPI_Waitall waits for all requests in the parameter array to complete. 
- MPI_Waitany waits for one or more requests in the parameter array to complete. 

 
Point-to-Point Operations: 

- Point-to-point operations are between two processes. 
 
Collective Operations: 

- Collective operations are between all processes in a communicator. 
- MPI_Barrier blocks until all processes in the communicator have reached this routine. 

- It helps you synchronize across programs. 
- MPI_Bcast sends data from the root process to all other processes in the 

communicator. 
- If the current process is the root, the buffer stores the data to be sent. Else, the 

buffer stores the data that has been received. 
- SPMD ensures that a single variable declaration can be used in both the root 

process and the receiving processes. 
- The implementation of this routine is abstracted from the user. 

 

 
 



- MPI_Reduce collects data from all processes, aggregates it, and stores the result in the 
root process. 

- The function signature is int MPI_Reduce(const void *sendbuf, void *recvbuf, 
int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm). 

- sendbuf is a buffer that stores the data to be sent, and it should be valid on all 
processes. 

- recvbuf is a buffer that stores the result, and it only needs to exist on the root 
process. 

- op is a predefined MPI operation (ex. MPI_SUM). 
 

 
 

- MPI_Allreduce sends the result of the aggregation back to all processes rather than 
only to the root process. 

- MPI_Scatter sends data from the root process to all other processes. 
- The function signature is int MPI_Scatter(const void *sendbuf, int sendcount, 

MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype 
recvtype, int root, MPI_Comm comm). 

- Based on sendcount and recvcount, MPI will split sendbuf and send different 
parts to different processes. 

- This function sends the same amount of data to each process. 
 

 
 

- MPI_Gather gathers data from all processes and stores the result (without aggregating 
it) in the root process. 

 



 
 

- MPI_Scan computes the scan (partial reductions) of data on a collection of processes1. 
 
Other MPI Calls: 

- MPI_Wtime returns the time elapsed since epoch. 
- To compute a program’s elapsed time, call this routine at the start and end of the 

program, then compute the difference. 
 

 
 
Calculating the Value of π: 

- To compute π programmatically, we divide a circle into tiny line segments and compute 
the integral over them. When this is done for a large number of iterations, π is 
approximated. 

- The serial algorithm is as follows: 
 

 
1 https://www.mpich.org/static/docs/v3.3/www3/MPI_Scan.html 



 
 

- The for loop approximates the integral. During each iteration, we calculate a partial value 
that is stored in x, which is then used in an expression that is added to a sum. After the 
for loop ends, this sum is then used in an expression that approximates π. 

- This is an embarrassingly parallel problem. No loop iteration depends on any other loop 
iteration, and therefore, we can split the loop iterations across several processes to 
parallelize this serial algorithm. To divide the work across processes, we can use a 
round robin strategy (ex. 0, 1, 2, 3, 0, 1, 2, 3, …) or a block division strategy (ex. 0, 
0, 0, 0, 1, 1, 1, 1, ….). 

- The parallel algorithm is as follows: 
 

 
 

- This parallel implementation uses a round-robin strategy to divide the work (ex. process 
1 performs loop iterations 2, 6, 10, …). 



- The MPI_Bcast operation is not required but demonstrates that if only one process 
creates the number of iterations n, it can broadcast it to all other processes. 

- The MPI_Reduce operation is necessary to aggregate the partial sums computed by 
each process. 

- This ensures that for all inputs n, the serial and parallel algorithms compute the 
same result. 

- The root process stores a variable globalpi, which stores the result of the 
reduction. globalpi is then output. 


