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Finishing up from last lecture 
Protocols for sending messages 

The algorithm used by the MPI runtime to send messages differs based on the size of 
the message being sent. There are three protocols used: Eager, Rendezvous, and Short. 

Eager is used for small messages. The sender assumes that the receiver has enough 
space to store the incoming message and immediately sends it. 

In contrast, Rendezvous does not assume the receiver has enough space to store the 
message. Instead, a handshake is first performed with the receiver that informs them of the 
incoming message’s size. Once the receiver confirms that a buffer of that size has been posted, 
the sender will send the message. For this class we can assume that the handshake always 
completes. 

Short is similar to eager and is used for very short messages. The difference is that the 
data is sent in the message envelope instead of in a separate send. The message envelope 
contains MPI runtime information for the send such as the datatype, tags, etc. This eliminates 
the separate sending of data from Eager and has potential performance considerations. 

A similar performance consideration exists for Eager/Rendezvous, specifically the 
maximum size limit before MPI switches from Eager to Rendezvous, as Eager is faster than 
Rendezvous. This size limit for the Eager protocol can be changed by the user through 
environment variables that set the size limit. 

Note that you as the user do not need to worry about calling these protocols. These 
“under the hood” protocols for sending messages are all handled by the MPI runtime, which will 
call the underlying libraries necessary for sending messages (i.e., UCX or PSM). The data to be 
sent is copied onto the Network Interface Card (NIC), which then copies it onto the network. The 
data goes through routers before reaching the destination NIC and is copied into the destination 
node’s buffer, at which point MPI is notified that the buffer is ready for use. 

Additionally, other MPI send modes exist but they won’t be used in this course. 
 
Performance modeling, analysis, and tools 
Strong scaling vs. weak scaling revisited 
 To review, strong scaling is when the total problem size is fixed but the number of 
processes increases. An example of this is sorting n numbers on 1, 2, 4… processes, where n 
remains the same. The ideal graph for strong scaling has the computation time decreasing as 
the number of processes increases. 
 On the other hand, weak scaling has a fixed problem size per process, but the total 
problem size increases. Using the game of life as an example: 

● 4 processes compute over a 256 x 256 board 
● 8 processes compute over a 512 x 256 board 
● 16 processes compute over a 512 x 512 board 

 Notice that the amount of cells each process handles does not change, we are just 
increasing the size of the problem. The ideal graph for weak scaling should be a horizontal line, 
where computation time stays constant even as the problem size and number of processes 
increases. 



 

 
Amdahl’s law revisited 
 Speedup is limited by the serial portion of the code (called the serial “bottleneck”). 
Assuming a fraction f of the code is parallelized on p processes, the speedup is calculated as: 

1
(1 − 𝑓) + 𝑓/𝑝

 

 
Performance analysis 
 Performance analysis is the process of studying parallel code performance to identify 
why performance might be slow. Causes may include inefficient serial performance, serial 
bottlenecks when run in parallel, and/or communication overheads. 
 There are a variety of analysis methods we can use for performance analysis. Using 
algebraic formulae we can perform time complexity analysis using data size n and number of 
processes p (an example of this using parallel prefix sum follows this section). Another method 
is scalability/isoefficiency analysis (will be discussed later in the notes). Various ways to 
model performance of operations (like input and output) exist, such as the LogP model or 
alpha-beta model (also discussed later in the notes). And finally, empirical performance 
analysis using tools can be done to identify areas of improvement. 
 
 Example: time complexity analysis on the parallel prefix sum problem 

Assume there are n total elements and p processes, where n >> p. This means each 
process is assigned a block of n/p elements. 

The initial prefix sum that each process calculates on its own block requires n/p 
calculations (iterate over all n/p elements in the block and sum them together). 

In the parallel algorithm, there are log(p) phases, as that is the number of strides needed 
to complete the algorithm. Each phase has n/p calculations, where the received prefix sum is 
added to all n/p elements in the block. Therefore each process does a total of 𝑙𝑜𝑔(𝑝) ∗ (𝑛/𝑝) 
calculations. Note that we are assuming unit time for calculations - in a more detailed analysis, 
each calculation will need to be multiplied by a constant C for the time each operation takes. 
Lastly, each process sends a maximum of 1 message per phase, which takes C time to send, 
so the communication cost is 𝑙𝑜𝑔(𝑝) ∗ 1 ∗ 𝐶. 

Since each process is load balanced in this scenario, each process should finish around 
the same time, so the total time is the maximum time across all processes. 
 
 Communication can also be modeled using the LogP model, a simple model for 
communication on an interconnection network. L is the latency or delay on the network, o is the 
overhead (i.e., the processor is busy in communication), g is the gap (i.e., between successive 
sends/receives), and P is the number of processors or processes. 
 An even simpler model for communication is the alpha + n * beta model (or alpha-beta 
model). This calculates how long it takes to send a message across a network using the 
following equation: 𝑇 = 𝛼 + 𝑛 ∗ 𝛽, where 𝛼 is the latency (defined as the startup time to send a 
message on the network - this is different from the LogP definition of latency!), n is the size of 
the message being sent, and 𝛽 is the bandwidth of the network. 
 



 

Isoefficiency 
 Isoefficiency calculates the relationship between the problem size and the number of 
processors to maintain a certain level of efficiency. In other words, it answers the question “At 
what rate should we increase the problem size with respect to the number of processors to keep 
efficiency constant?” To ensure we can understand this analysis, let’s review speedup and 
efficiency. 

Speedup is the ratio of computation time on one process to the computation time on p 
processes. The formula for it is 𝑡!/𝑡". For example, if a single process takes 100 seconds to 
complete, and 4 processes take 25 seconds, the speedup is 100/25 = 4. But if 4 processes take 
40 seconds, then the speedup is only 100/40 = 2.5. Efficiency is the speedup per process. The 
formula for it is 𝑡!/(𝑡" ∗ 𝑝). The efficiency is between 0 and 1, where 1 is perfect efficiency (a 
good goal is 0.8 or 0.9). Following the above example, the efficiency when 4 processes take 25 
seconds is 100 / (25 * 4) = 1, but if 4 processes take 40 seconds, then the efficiency is only 100 
/ (40 * 4) = 0.625. 

Now let’s look at efficiency in terms of overhead. The total time in all processes is equal 
to the time spent doing useful computation plus the overhead (extra computation + 
communication + idle time). Expressed another way, 𝑝 ∗ 𝑡" = 𝑡! + 𝑡#, where t1 is the useful 
computation time and to is the overhead. If we look at parallel prefix sum, the total time is 𝑝 ∗
𝑂(𝑛/𝑝) 	∗ 	𝑙𝑜𝑔(𝑝) = 𝑂(𝑛) ∗ 𝑙𝑜𝑔(𝑝) total time, which is more than the O(n) time from just the serial 
prefix sum. Now that we have an alternative expression for total time, we can rewrite the 
efficiency formula as follows: 𝑡!/(𝑡" ∗ 𝑝) 	= 𝑡!/(𝑡! + 𝑡#) = 1/(1 + (𝑡#/𝑡!)). Given this, we can 
derive the isoefficiency function, as efficiency is constant if and only if 𝑡#/𝑡! is constant (K). 𝑡# =
𝐾 ∗ 𝑡!. What this means is that overhead should be a constant factor of the useful computation if 
the efficiency is to remain constant. 

 
Example: Isoefficiency analysis on parallel 2D stencil problem 
Given n elements and p processes, let’s use isoefficiency analysis to compare 1D 

decomposition to 2D decomposition.  
1D decomposition 
Since there are n elements, the board is a √𝑛 ∗ √𝑛 board. Each process gets √𝑛/𝑝 rows, 

which equates to n/p elements per process. As such, each process does n/p computations per 
iteration - this is the value for 𝑡!. Additionally, each process sends a maximum of 2√𝑛 elements 
to its neighbors - this is the value for 𝑡#. Therefore, 𝑡#/𝑡! = (2√𝑛)/(𝑛/𝑝) = (2𝑝)/√𝑛 

2D decomposition 
Will be completed next class 


