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1 OpenMP 

1.1 Lastprivate clause 
 
Question: In the below loop, can you make val a global variable and get the expected behavior? 
 
#pragma omp parallel for 
for (int i = 0; i < n; i++) { 

val += i; 
} 
printf(“%d\n”, val); 
 
Answer: Sadly, no. Using a global variable in this context would constitute a data race, as there 
are multiple threads reading from the same value and at least one is writing. Though it may give 
the correct answer on some runs, the use of a global (or shared) variable in this context would 
make the program unsafe for parallel execution. 

1.2 Loop Scheduling 
Loop scheduling describes the strategy that OpenMP takes to divide iterations of a loop 
amongst worker threads. The default schedule seeks to balance the work between threads as 
evenly as possible; however, the user can specify different strategies with a schedule clause. 
 
The clause is of the form: schedule (type[, chunk]) 
 
The type can have the values of static, dynamic, guided, or runtime 
 
Chunks define a contiguous block of indices assigned to a thread. A chunk size of 1 would 
have each adjacent index assigned to a different thread.  
 
Static scheduling evenly divides chunks between the threads. If a thread finishes work before 
other threads, it will wait for the others to finish. This schedule works well in cases where 
iterations of the loop take a constant amount of time across indices. 
 



Dynamic scheduling takes the next chunk to process from an internal work queue, with the 
default chunk size equal to one. For those familiar, this execution model is similar to the async 
channel model that the Go programming language uses. This scheduling is useful when 
iterations of the loop can take a variable amount of time.  
 
Guided scheduling works similarly to dynamic, but the chunk size decreases as threads pull 
from the work queue. This seeks to help with load imbalances between iterations. 
 
Auto leaves the schedule up to the compiler. 
 
Runtime reads the schedule from the OMP_SCHEDULE environment variable. This allows the 
user to select the schedule at runtime without needing to recompile the program, which can take 
a large amount of time for complex, large projects. 

1.3 Calculating Pi with OpenMP 
int main(int argc, char *argv[]) 
{ 

… 
 
n = 10000; 
h = 1.0 / (double) n; 
sum = 0.0; 
 
#pragma omp parallel for firstprivate(h) private(x) reduction(+: 
sum) 
for (i = 1; i <= n; i += 1) { 

x = h * ((double)i - 0.5); 
sum += (4.0 / (1.0 + x * x)); 

} 
 
pi = h * sum; 
… 

} 
 
To parallelize this loop, we simply needed to add the pragma statement shown above. h and x 
are declared private for correctness. h most likely does not need to be declared firstprivate 
as it is not being written to inside the loop, and it is already shared within the pragma. The 
private(x) could have also been removed by declaring the variable inside the loop, making it 
local to the block. In general, OpenMP tries to keep the same semantics as the sequential 



program, which extends to making locally scoped variables private. The reduction is then the 
only clause necessary, as sum is being read from and written to by multiple threads.  

1.4 Parallel Region 
A parallel region can be parallelized using OpenMP using #pragma omp parallel 
[clause [clause] … ]. The parallel region sets the number of threads in the same way that 
they are for the parallel for. If placed above an expression (like a function call), it will parallelize 
that single line. If placed above a code block, delineated by curly braces, it will parallelize the 
entire block.  
 
Warning: It is on the programmer to make sure that the code block does not have race 
conditions and is thread safe. 

1.5 Synchronization 
If all data is local to the parallel region, then no synchronization is needed. This goes for a 
region that only reads from variables as well. Sadly, these cases cover few useful programs and 
synchronization is necessary.  
 
Note: Synchronization should be used as sparingly as possible, as that section becomes 
sequential. If possible, prefer lighter weight synchronization mechanisms like atomics over 
heavier mutexes and critical regions. Remember Amdahl’s Law! We are performance limited by 
the fraction of our program that is sequential.  
 
Atomic is a construct that specifies that the memory location should be updated atomically at 
the next expression. This controls access to a memory location in a way that does not allow for 
data races. See https://www.openmp.org/spec-html/5.1/openmpsu105.html for details. It is 
restricted to a single expression, as opposed to a code block. If multiple lines need to be 
accessed synchronously, please use the critical region or library locks. 
 
Critical regions create a sequential region nested inside a parallel region. They can span 
multiple lines, and are created with a pragma statement. As with other pragmas, a single 
expression can be affected as well. A single line critical region is useful for a variable that 
cannot be updated atomically. The semantics are similar to the use of the synchronized 
keyword in Java.  
 
Locks are a programmatic way of locking a region of code. It acts similarly to a critical region, 
except it is called by calling a pair of set and unset functions, as opposed to using a pragma. 
See https://www.openmp.org/spec-html/5.0/openmpse31.html for more information. 

https://www.openmp.org/spec-html/5.1/openmpsu105.html
https://www.openmp.org/spec-html/5.0/openmpse31.html


1.6 GPGPU 
General purpose graphics processing units are the paradigm of using GPUs for general 
computation instead of the fixed function graphics pipelines they were originally designed for. 
GPGPU programming was first done by leveraging shaders in ways they were not originally 
intended. This way of programming was often challenging, as the semantics of your problem 
had to be warped to the semantics of graphics programming. With the introduction of compute 
platforms such as CUDA, and more recently HIP/ROCm, non-graphics applications could 
leverage GPUs without adopting a graphics rasterization model.  
 
GPUs are separate daughter boards in most computers (though some are integrated into the 
CPU package in what is known as integrated graphics). While CPUs have between 1 and 128 
cores on most architectures, GPUs have thousands of cores. This trade off is possible because 
GPU cores have fewer total instructions and are clocked at lower speeds. The overall cache 
structure is different from CPUs, with small groups of threads sharing a cache and an L2 cache 
separating thread block caches from the DRAM. It is critical to note that GPUs have separate 
memory than the system memory that CPU uses (though there are some unified architectures 
where GPU and CPU share the same memory, such as on many game consoles or Apple’s 
custom silicon). This means that programmers need to manage the transfer of data between 
these two forms of memory. This transfer is often the slowest process in GPGPU programming 
and should be avoided as much as possible. 

1.7 OpenMP on GPUs 
With newer versions of OpenMP, the parallelization can be performed on the GPU. The pragma 
is of the form #pragma omp target teams distribute parallel for. The teams 
distribute construct creates a team of worker threads that process the work. The target 
specifies that the parallel execution should be handled on an accelerator. It is up to the 
programmer to handle memory transfers between the CPU and GPU memory. 

2 Parallel Algorithms 

2.1 Matrix Multiplication 
A common operation in scientific computing (and machine learning) is the matrix multiply. 
Frequently this is done on matrices that are larger than system memory and need to be 
parallelized by necessity. For examples of libraries that perform this operation, check out 
https://eigen.tuxfamily.org/index.php?title=Main_Page, https://bitbucket.org/blaze-
lib/blaze/src/master/, https://arma.sourceforge.net/, https://www.netlib.org/blas/, 
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html#gs.5zyov7,  
https://icl.utk.edu/magma/, and https://developer.nvidia.com/cublas.  
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https://developer.nvidia.com/cublas


In matrix multiplication, the rows of the first matrix are dotted with the columns of the second 
matrix. This produces a single element in the final matrix. Due to this, the number of columns of 
the first matrix must equal the number of rows of the second matrix, or else the operation is not 
possible. The resulting matrix then has the same number of rows as the first matrix and the 
same number of columns as the second matrix. Under this definition, the matrices need not be 
square. 

2.2 Blocking for Matrix Multiplication 
Even before parallelizing the multiplication, the sequential algorithm can be updated to better 
utilize the cache. This is especially useful for the second matrix, as its elements are accessed in 
column order. In C/C++ matrices are stored in row major order, so to iterate columns the entire 
length of the row needs to be skipped to access the next element. For larger matrices, this can 
cause many cache misses as the row cannot fit in memory. To alleviate this problem, elements 
are stored in blocks that are sized based on the cache. Each block should be able to fit entirely 
in cache so that matrix multiplication has a higher percentage of cache hits. This can greatly 
improve the speed of the operation.  


