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Loop Scheduling 
Loop scheduling is the assignment of loop iterations to different worker threads. The user can 
specify the type using the schedule clause: 
 
schedule (type[, chunk]) 
 
The type of the schedule can be static, dynamic, guided, or runtime. The default schedule tries 
to balance iterations among threads. In a static schedule, iterations are divided as evenly as 
possible before the program runs. In a dynamic schedule, OpenMP assigns a chunk size 
(default size 1) block to each thread, and once a thread finishes a block, it retrieves the next 
block from an internal work queue. This allows balancing work across threads even though the 
iterations were not evenly divided beforehand. A guided schedule is similar to a dynamic 
schedule, but it starts with a large chunk size and gradually reduces it to handle load imbalance 
between iterations. Lastly, an auto schedule is where scheduling is delegated to the compiler. 
 
When the user sets the schedule at runtime using the OMP_SCHEDULE environment variable, 
the schedule can be changed later on without re-compiling the program. However, if it is set in 
the program, it is hard-coded there and the program must be re-compiled if the user wants to 
change the schedule. (This is different from setting the OMP_NUM_THREADS environment 
variable, where once it is set, the entire program uses that value whereas if it is set in the 
program itself, the number of threads can be changed for different sections of code.) 
 
Example: Calculate the value of pi 
Consider the code block below: 
 
int main(int argc, char *argv[])  
{    

...       
n = 10000;     
 
h   = 1.0 / (double) n;     
sum = 0.0;    
 
for (i = 1; i <= n; i += 1) {        

x = h * ((double)i - 0.5);         
sum += (4.0 / (1.0 + x * x));     

}     
pi = h * sum;     
... 



 } 
Using OpenMP, we want to assign different iterations to different threads. Let’s first consider 
which variables might get overwritten by different threads. The variables sum and x will be 
overwritten as they are by default shared, so we need to make them private. Thus, we add the 
following pragma before the for-loop: 
 
#pragma omp parallel for firstprivate(h) private(x) reduction(+: sum) 
 
We want every thread to have a private copy of sum, and at the end of the loop we want to 
combine all the sums and make the reduced value visible to the master thread. Note that the 
firstprivate(h)included is not necessary as even though the variable h is shared by 
default, it is read-only in this program so we do not need to make it private. 
 
Parallel Region 
Other than for-loops we can also instruct all threads to execute a single statement or structured 
block of code. However, this requires more manual work for the user. In the case of parallel for, 
the OpenMP runtime knows the number of iterations and divides those across threads. In the 
case of parallel regions, there is no way for the compiler to auto-parallelize. The user needs to 
manually decide which thread(s) will execute what part of that structured block (Note that if the 
statement is just a single printf, there is no need to set anything since every thread will just run 
the print statement, but if the code block is more complex, the user needs to manually 
parallelize). Similar to parallel for, the number of threads can be specified by the user. Note that 
OpenMP is more commonly used for programs with for loops as the primary use case.  
 
Synchronization 
We need synchronization because concurrent access to shared data may result in 
inconsistencies. We avoid this using mutual exclusion - in parallel regions we may need to use 
other directives inside to prevent overwriting. Mutual exclusion means that only 1 thread writes 
to a certain variable at a time before other threads can read its value. We discuss 2 directives: 
 
The critical directive specifies that the following code is only to be executed by 1 thread at a 
time (note that this should only be used for small portions of code as it essentially makes the 
code sequential). It is written: 
 
#pragma omp critical [(name)] 

structured block 
 

The atomic directive specifies that a memory location should be updated by 1 thread at a time 
before other threads can read. It is written: 
 
 
#pragma omp atomic 

expression 
 



GPGPUs: General Purpose Graphical Processing Units 
The difference between GPUs and CPUs lies in that GPUs have a larger number of low power 
(slower) cores, allowing us to parallelize computation over a larger number of cores. There are 
maybe 10,000 cores on a modern GPU. GPUs are accelerators and typically attached to a CPU 
as a helper. Thus, we often need to copy data from CPU memory to GPU in order to perform 
computations and then copy the data back into CPU memory. 
 
We can direct OpenMP to use the GPU for a for loop using the following pragma: 
 
#pragma omp target teams distribute parallel for 
 
The target keyword means to run on an accelerator / device (on a GPU rather than CPU) and 
teams distribute creates a team of worker threads, where each thread runs on a GPU core, and 
distributes work amongst them. 
 
Parallel Algorithms 
Although we discuss collectives like reduction, broadcast, etc. in the context of scientific 
calculations in this class, it has applications in fields like AI as well (ex. when training large 
language models in parallel, we need to use collectives to get the final result). One calculation 
with wide applications, especially in ML and AI, is matrix multiplication. First we discuss the 
basic concept of matrix multiplication. We have 2 input arrays A and B and 1 output array C. 
The number of columns in the first matrix A must equal the number of rows in the second matrix 
B. The resulting array C has the same number of rows as A and the same number of columns 
as B. Then, to calculate A * B = C, for a cell of C in row i and column j, we take row i of A and 
column j of B, perform pairwise multiplication, and finally take the sum of those multiplications.  
 
A performance issue that may arise for large arrays is that depending on the language and its 
model, it may be easier to access one array and have more cache misses for the other array. 
Assuming that both matrices A and B are stored in row major, in the case of A, an entire row 
may not fit in cache, and in the case of B, when we try to access a single column, since the 
column elements are not in contiguous parts of memory, we may need to bring all rows into 
memory.  
 
We can solve this problem by using blocking to improve cache performance. Blocking is a 
sequential optimization that can be done before performing multiplication. We create smaller 
blocks of the matrix that fit in cache, leading to cache reuse (For example if we had a 128x128 
matrix, we could split it up into blocks of 32x32). Then, we can bring in one block of A and B at a 
time into memory, perform matrix multiplication on those blocks, then write the data out. If block 
sizes are chosen properly, for a single block of A, we can fit an entire row in memory. 
Furthermore, for a single block of B, to access a single column, we can bring in all rows on B 
without needing to throw out data in the cache. 
  
Next we discuss the parallelization of matrix multiplication in the context of a distributed memory 
programming model. We can perform a similar scheme as above to implement parallel matrix 



multiplication. Assuming A and B don’t fit in memory, we can store blocks of A and B in 
distributed memory and communicate between processes to get the right sub-matrices to each 
process. Each process has a smaller portion of A and B and computes a portion of C. Finally, 
we reduce across all processes to get the final, complete version of C.  
 
Citations: OpenMP Lecture Slides 


