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Cache and Memory Management 
In the realm of parallel algorithms, the constraints imposed by the finite number of 
cache lines in caches play a crucial role. This limitation necessitates thoughtful memory 
management, as cache filling requires the replacement of existing parts, potentially 
resulting in cache misses. 

To address these challenges and improve cache performance, the concept of blocking 
is introduced. By creating smaller blocks that fit into the cache, it becomes possible to 
promote cache reuse. For instance, a matrix multiplication example in the slide 
illustrates the idea of blocking, emphasizing the reuse of specific columns or rows, such 
as 𝐴10, throughout multiple computations. 

Parallel Matrix Multiplication 

Data and Work Distribution 

When delving into parallel matrix multiplication, a critical decision revolves around how 
to distribute data and work effectively. The overarching strategy involves assigning 
different subblocks of the resulting matrix C to various computational nodes. This 
entails dividing matrices A and B, storing them in a distributed manner, and establishing 
communication channels between processes. Each process is then responsible for 
computing a specific portion of the resulting matrix C. 

Cannon’s 2D Matrix Multiply 

Cannon’s algorithm introduces a 2D virtual grid of processes and assigns sub-blocks of 
matrices A and B to each process. Each process takes charge of computing a distinct 
sub-block of the final matrix C. This method necessitates communication with other 
processes in both its row and column. There are two important steps in this method,  
initial skew and shifting by one. Initial skew involves displacing blocks in row i by i on 
matrix A and column j by j on matrix B. Shift by 1 involves moving all rows of matrix A 
one position to the left and all columns of matrix B one position up. These techniques 
help in organizing the communication between processes effectively. The time 



complexity of Cannon’s algorithm is influenced by additional computations, 
emphasizing the impact of communication overhead. 

Agarwal’s 3D Matrix Multiply 

Agarwal's approach takes it a step further by arranging processes in a 3D virtual grid. 
Sub-blocks of matrices A and B are assigned to each process, and each process 
computes a partial sub-block of the resulting matrix C. Notably, data movement occurs 
only once before and after computation. This involves copying A to all i-k planes and B 
to all j-k planes, minimizing communication frequency. A single matrix multiplication is 
performed to calculate partial C. This stage focuses on local computations, reducing 
the need for inter-process communication during the main computation. The final result 
is calculated through an all-reduce operation along i-j planes. While the one-time data 
movement minimizes communication overhead during the computation, it comes at the 
cost of increased memory requirements. 

Communication Algorithms 

Reduction 

Communication algorithms like reduction come into play, involving scalar and vector 
reductions. The MPI_Reduce function is employed to implement point-to-point 
operations. Reduction strategies include the naive approach, where each process sends 
data to a central root, and the spanning tree approach, which organizes processes in a 
k-ary tree, thereby optimizing communication efficiency. 

All-to-All 

In the context of all-to-all communication, each process sends a distinct message to 
every other process. The naive algorithm for this communication involves pairwise data 
exchange between processes. 

 


