
CMSC416: Introduction to Parallel Computing 
 

Topic: Performance Issues 
Date: April 4, 2024 
 

Types of metrics serve as essential tools for assessing program performance across 
various domains. "Time to solution" and "time per setup (iteration)" metrics provide insights 
into the efficiency of completing specific tasks or iterations within a program. These metrics are 
crucial for understanding how swiftly a program can deliver results. Metrics like "science 
progress" offer a more nuanced perspective by quantifying the rate at which meaningful 
scientific outcomes are achieved within a given timeframe. This metric is particularly relevant in 
research and scientific computing contexts, where the pace of discovery is paramount. 
"Floating point operations per second (flop/s)" and comparisons between data points, such 
as speedup and efficiency, offer insights into the computational efficiency of a program. By 
measuring the rate of mathematical operations or comparing performance gains achieved 
through parallelization, these metrics aid in optimizing program execution. Despite their 
diversity, these metrics collectively contribute to understanding the speed and effectiveness of 
program performance, providing valuable insights for optimization and decision-making. 
 
Once data collection is complete, the next step involves analyzing key performance indicators 
(KPIs) such as peak flop/s, peak memory bandwidth, and peak network bandwidth. These 
metrics provide insights into the maximum computational and data transfer capabilities of the 
system. However, achieving peak performance is often elusive due to various factors. Peak 
performance represents the theoretical upper bound of system performance, often advertised 
by hardware manufacturers. In practice, actual performance typically ranges from 20% to 40% 
of the peak advertised performance. Context plays a crucial role in determining achievable 
performance levels; for instance, in deep learning applications, performance closer to 60% to 
80% of peak is feasible. Factors such as communication efficiency, hardware architecture, and 
workload characteristics influence performance outcomes. Understanding the reasons behind 
performance limitations is essential for optimizing system performance effectively. While 
achieving peak performance may not always be feasible, identifying and addressing 
performance bottlenecks can lead to significant improvements in overall efficiency and 
effectiveness. 
 
Identifying and addressing performance issues is crucial for optimizing program execution and 
maximizing computational efficiency. Common performance issues include serial code 
performance bottlenecks, inefficient memory access, and ineffective floating-point operations. 
To remedy these issues, several strategies can be employed: 
 

1. Inefficient Memory Access: This issue arises when programs access memory in a non-
optimal manner, leading to slowdowns. To address this, performance tools can be 
utilized to identify memory access patterns and optimize data movement. Maximizing 
data reuse and minimizing unnecessary data transfers are also effective strategies. 



2. Inefficient Floating Point Operations: Suboptimal floating-point operations can hinder 
performance. Optimizing floating-point calculations through algorithmic improvements 
and compiler optimizations can help alleviate this issue. 

3. Load Imbalance: Load imbalances occur when some processes within a parallel 
program perform more work than others, leading to uneven resource utilization. To 
mitigate load imbalances, workload distribution strategies can be adjusted, and load 
balancing algorithms can be implemented. 

4. Communication Issues: Excessive time spent on communication between processes 
can significantly impact performance. Changing communication overheads, adjusting 
message sizes, and ensuring overlap between communication and computation tasks 
can help reduce communication overhead. 

5. Algorithmic Overhead: Some parallel algorithms may introduce additional 
computational overhead, leading to performance degradation. Optimizing parallel 
algorithms to minimize unnecessary computations and reduce dependencies between 
processes can help improve performance. 

6. Speculative Loss: Speculative computations that are not ultimately used in the final 
result can waste computational resources. Ensuring that speculative computations are 
minimized and only performed when necessary can help mitigate this issue. 

7. Critical Path: The critical path represents the longest chain of operations with 
consecutive dependencies across processes. Shortening the critical path by removing 
unnecessary work and minimizing dependencies between processes can help improve 
overall performance. 

8. Insufficient Parallelism: Inadequate exploitation of parallel resources can limit 
performance gains. Identifying opportunities for parallelism within the program and 
utilizing parallel computing resources to their fullest extent can help address this issue. 

9. Serial Bottlenecks: Serial bottlenecks occur when one process performs computations 
that delay the progress of other processes. Detecting and addressing serial bottlenecks 
by parallelizing tasks and employing hierarchical schemes can help improve overall 
efficiency. 

 
By addressing these performance issues using appropriate strategies and optimizations, 
program efficiency and scalability can be significantly enhanced, leading to improved overall 
performance. 
 
General performance issues encompass a range of challenges that impact program execution 
and system efficiency. One significant concern is performance variability, which can occur due 
to factors beyond the control of programmers. These factors include operating system noise, 
also known as jitter, which introduces unpredictability into system performance. Additionally, 
variations in the configuration of nodes within an HPC cluster, such as full or lightweight 
kernels, can influence performance predictability. Lightweight kernels, tailored to specific 
environments and lacking extraneous daemons like print daemons, can mitigate some sources 
of variability. However, contention for shared resources, including network and filesystem 
access, further exacerbates performance variability, leading to several problems such as 
prolonged science simulations, increased wait times in job queues, and inefficient 



machine time allocation. Ultimately, these issues contribute to lower system throughput, 
increased energy usage, and higher operational costs. Moreover, performance variability affects 
the software development cycle by complicating debugging efforts and necessitating the 
quantification of software changes' impact on performance. Estimating the time required for 
batch jobs or simulations becomes challenging in the face of performance fluctuations, 
highlighting the importance of addressing these general performance issues for improved 
system stability and efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


