

CMSC416: Introduction to Parallel Computing

Topic: performance analysis
Date: April 4th, 2024

Review:
 CUDA only can use in NVIDIA

1. Performance matrics
 HOW FAST YOUR PROGRAM CAN RUN?
E.g.: simple program may 4-5 hrs, complex one can take days.
 ◦ time to solution
 ◦ Time per step(iteration)
 ◦ Science progress(figure of merit per unit time) e.g.: simulate covid-19 in 180 days,
separate into 5days more matrix
 ◦ Floating point predations per second(flop/s)
 ◦ when comparing multiple data points

2. Best performance
 ◦ Peak flop/s(Rpeak: advertise, something never achieved) (Rmax: realistic): 20/40%
 ◦ Peak memory bandwidth
 ◦ Peak network bandwidthine
 ◦ WHY not achieve peak performance?
 ‣ Integer operations
 ‣ Floating point operations
 ‣ Conditional instructions(branches)
 ‣ Loads/stores (e.g.: take data from memory)
 ‣ Data movement across the network(messages + I/O)(I/O: file read etc.)
 NOTE: sequential code has the same movements

3. Performance issues
 ◦ serial code performance issues
 ‣ Inefficient memory access
 ‣ Inefficient floating point operations

 ‣ Performance tools
 ‣ Solutions:
 • minimize data movement in the memory hierarchy
 • Maximize data reuse
 • Optimize floating point calculations(e.g.: approximation of square root)
 ◦ Load imbalance

 ‣ The fast process need to wait the slower ones
 ◦ communication issues/ parallel overhead
 ‣ Communication overhead/ I/O overhead(over head and grainsize: lots of tiny
messages or a fewer larger messages)
 ‣ Spending increasing proportion of time on communication(in reading amounts
of communication ass we run with more processes)
 ‣ No overlap between communication and computation
 ‣ Frequent global synchronization
 ◦ algorithmic overhead/replicated work
 ‣ Speculative loss: perform extra computation speculatively buy not use all the
results
 ‣ Critical path: dependencies during communication(long communication chain
of operations with consecutive dependencies across processes)
 • Solutions:
 ◦ Eliminate completely
 ◦ shorten the critical path
 ‣ Insufficient parallelism
 ‣ Bottlenecks: same to serial bottlenecks(have load imbalance): one process ask
others to wait
 • Examples:
 ◦ Reduce to one process and then broadcast
 ◦ One process responsible for input/output, or assign work to
others
 • Solutions:
 ◦ Parallelize as much as possible, use hierarchical schemes.

4. Performance variability is a real concern
 ◦ Individual jobs run slower
 ◦ Overall lower system throughput
 ◦ Increased energy usage/cost
 ◦ Affects software development cycle
 ‣ Debugging performance issues
 ‣ Quantifying the effect of various software changes on performance
 • Code changes
 • System software changes

5. Source of performance variability
 ◦ OS noise/jitter
 ‣ Node on an HPC cluster may have: full/light-wight kernel
 ‣ Determines what services/daemons(e.g.: checking WI-FI work correctly) run
 ‣ Measuring OS noise:

 • Fixed work quanta(FWQ) & fixed time quanta(FTQ)
 ‣ Impacts computation due to interrupts by OS

