
CMSC 416 Parallel Computing 
April 9th, 2024 
 
Topics: OS Noise, Task-based programming and Charm++ 

OS Noise 
OS noise refers to fluctuations in the performance of an operating system (OS) that can impact 
the efficiency of parallel computing systems.  

Measuring OS Noise 
Measuring OS noise involves assessing factors like Fixed Work Quanta (FWQ), where tasks run 
for a fixed workload, and Fixed Time Quanta (FTQ), where tasks run for a specific time duration. 
In the case of missing supercomputer performance, various factors contribute to OS noise. 
Some processor cores may operate slower than others due to different daemon activities, which 
are background processes with varying wake-up frequencies. This can affect communication 
between processes, leading to significant delays for certain tasks. Compute variability issues 
can cascade into communication delays, which can delay program execution by huge amounts. 
 

Mitigating OS Noise 
Several strategies can mitigate OS noise in parallel computing environments. Implementing the 
following mitigation strategies can reduce the effects of OS noise when running parallel 
programs. 

 
1. Using Lightweight OS:  Employing a lightweight operating system reduces the overhead 

with parallel tasks. 
2. Turning off Unnecessary Daemons: Turning off unnecessary background processes 

minimizes OS activity and reduces interference with compute tasks. 
3. Reducing Daemon Frequencies: Lowering the frequency of daemon activities decreases 

their impact on parallel computations. 
4. Dedicating Cores to OS Daemons: Allocating specific processor cores exclusively for OS 

tasks ensures smoother parallel processing. For example, in a system with 64 cores, 
dedicating cores 0 and 32 for only OS operations leaves the remaining cores (1-31 and 
33-64) available for user programs. 

5. Core Allocation to OS: User programs can optimize performance by avoiding specific 
cores affected by OS noise, which improves parallel processing efficiency.  

 

Task-based Programming Models and Charm++ 
 



In various task-based programming models, such as Charm++, StarPU, HPX, and Legion, 
programs or computations are described in terms of tasks. A task can be defined as a piece of 
code that can be executed concurrently by multiple processes, potentially alongside other tasks. 
These tasks can vary in size, being either large or small, and range from fine-grained to coarse-
grained. 
 

Charm++ 
Charm++ (developed at UIUC) is an example of this approach. It enables programmers to 
define tasks and assign them to cores or nodes. Tasks can be short-lived or persistent 
throughout program execution, and the runtime system manages their scheduling and 
distribution efficiently. 

Charm++ Key Principles 
 

1. Decomposition into Chares: Programmers decompose both data and work into objects, 
known as chares. Charm++ extends C++ to facilitate this, allowing programmers to 
create C++ objects. 

2. Assigning Objects to Physical Resources: The runtime system of Charm++ assigns 
objects to physical resources such as cores and nodes, handling distribution and 
scheduling of tasks. Note that blocking calls should not be assumed. 

3. Object has Access Only to its Own Data: If data is needed from some other object, it 
must be requested explicitly via remote method invocation (foo.get_data()).  

4. Asynchronous Message-driven Execution: With message-driven execution, Objects 
communicate with each other via remote method invocation. 

Creating a Charm++ “Hello World” Program 
To create a "Hello World" program in Charm++, you work with a Charm Interface (CI) file and a 
C++ file. The task of printing "hello world" is divided into tasks within the C++ file. When using 
Charm++, a wrapper is used. This involves a Charm compiler to compile the interface file, which 
is then converted into valid C++ code. The compilation process generates files named 
charm_hello.decl.h and charm_hello.def.h, which need to be included at the bottom of your C++ 
files. Following this, you compile your C++ code and link it to an executable. 
 
Charm++ also supports the creation of chare arrays, allowing users to generate indexed 
collections of data-driven objects. These arrays can be structured in various dimensions, such 
as 1D, 2D, or 3D. The mapping of array elements (objects) to hardware resources is managed 
by the runtime system (RTS), which aims to load balance evenly across physical cores. 



Over-decomposition in Charm++  
Over-decomposition in Charm++ involves the creation of numerous small objects per physical 
core, often organized into arrays spanning one, two, or three dimensions. The runtime system 
handles the allocation of objects to processors and can communicate data between physical 
resources (cores), enabling automatic load balancing. 

Message-driven execution 
Message-driven execution in Charm++ operates on the principle that an object is scheduled for 
execution by the runtime scheduler only upon receiving a relevant message. This message-
driven approach ensures that objects are processed first-come, first-served. Once an object 
completes its task, it is removed from the execution queue, allowing another object to 
commence processing.  

Cost of creating additional objects 
The cost of creating additional objects in Charm++ includes factors such as context switch 
overhead, impacts on cache performance, and memory overhead. Charm++ allows for 
experimentation with different grain sizes and determining the appropriate grain size for objects. 
For example, you can use Charm++ for testing performance on 16, 64, or 128 tasks on 16 
processes. This distinguishes Charm++ from MPI, which lacks these testing options, as it is 
limited to running 16 tasks on 16 processes.  
 


