
CMSC416 4/16/24 Notes

- A Proxy class is generated for each chare class

- The runtime needs to upack data and figure out where the chare class is

- Functions exist to communicate and handle chare class data

- chareProxy.entryMethod() is a function that broadcasts data. Without a subscript it

broadcasts all the data

- contribute()

- This is a reduction function

- It can have no arguments or have these arguments: contribute(int bytes, const void

*data, CkReduction::reducerType type)

- The output for reduction goes into a callback object

- CkCallback* cb = new

CkCallback(CkIndex_myType::myReductionFunction(NULL), thisProxy);

- contribute(bytes, data, reducerType, cb);

- The reduction data is processed by the reduction function

- void myType::myReductionFunction(CkReductionMsg *msg) {

int size = msg->getSize() / sizeof(type);

type *output = (type *) msg->getData();

 ...

}

- Load Imbalance

- This is when work is unequally distributed across processes

- Calculated with: max load / mean load

- Load Balancing is the process of correcting this

- You have to decide when load balancing is really appropriate because it also has an

overhead

- Static Load Balancing: Managing the initial load distribution

- Dynamic Load Balancing: Managing load distribution over time

- Centralized Load Balancing: All the data is collected into one process with a global view

and then the work is distributed

- Distributed Load Balancing: Each process knows and manages the load of n of its

neighbors

- Hybrid/Heirarchical Load Balancing: Combines both the strategies

- Computional Load, Communication Load, and the Communication Graph is used in load

balancing

- Load Balancing Goals:

- Bring the process with the maximum load close to the average load

- Minimize data migration

- Greedy Strategy for Load Balancing:

- Sort the processes by load and then take load from the heaviest process and assign

it to the lightest

- Work Stealing: A process takes load from nearby processes when it has completed its

task.

