
Designing Parallel Programs
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC616)



Abhinav Bhatele (CMSC416 / CMSC616)

Writing parallel programs

2



Abhinav Bhatele (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

2



Abhinav Bhatele (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

2

SPMD model



Abhinav Bhatele (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

2

SPMD model



Abhinav Bhatele (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

• Computation: how to divide work among threads/processes?

2

SPMD model



Abhinav Bhatele (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

• Computation: how to divide work among threads/processes?

• Figure out how often communication will be needed

2

SPMD model



Abhinav Bhatele (CMSC416 / CMSC616)

Conway’s Game of Life

• Two-dimensional grid of (square) cells

• Each cell can be in one of two states: live or dead

• Every cell only interacts with its eight nearest 
neighbors

• In every generation (or iteration or time step), 
there are some rules that decide if a cell will 
continue to live or die or be born (dead ➜ live) 

3

By Lev Kalmykov - Own work, CC BY-SA 4.0,  
https://commons.wikimedia.org/w/index.php?curid=43448735https://en.wikipedia.org/wiki/Conway's_Game_of_Life



Abhinav Bhatele (CMSC416 / CMSC616)

Conway’s Game of Life

• Two-dimensional grid of (square) cells

• Each cell can be in one of two states: live or dead

• Every cell only interacts with its eight nearest 
neighbors

• In every generation (or iteration or time step), 
there are some rules that decide if a cell will 
continue to live or die or be born (dead ➜ live) 

3

By Lev Kalmykov - Own work, CC BY-SA 4.0,  
https://commons.wikimedia.org/w/index.php?curid=43448735https://en.wikipedia.org/wiki/Conway's_Game_of_Life



Abhinav Bhatele (CMSC416 / CMSC616)

Two-dimensional stencil computation

• Commonly found kernel in computational codes

• Heat diffusion, Jacobi method, Gauss-Seidel method

4

A[i, j] =
A[i, j] + A[i − 1,j] + A[i + 1,j] + A[i, j − 1] + A[i, j + 1]

5



Abhinav Bhatele (CMSC416 / CMSC616)

Two-dimensional stencil computation

• Commonly found kernel in computational codes

• Heat diffusion, Jacobi method, Gauss-Seidel method

4

A[i, j] =
A[i, j] + A[i − 1,j] + A[i + 1,j] + A[i, j − 1] + A[i, j + 1]

5



Abhinav Bhatele (CMSC416 / CMSC616)

Serial code

5

for(int t=0; t<num_steps; t++) {
  ...
  
  for(i ...)
    for(j ...)
      A_new[i, j] = (A[i, j] + A[i-1, j] + A[i+1, j] + A[i, j-1] + A[i, j+1]) * 0.2

  // copy contents of A_new into A
  ...
}



Abhinav Bhatele (CMSC416 / CMSC616)

Serial code

5

for(int t=0; t<num_steps; t++) {
  ...
  
  for(i ...)
    for(j ...)
      A_new[i, j] = (A[i, j] + A[i-1, j] + A[i+1, j] + A[i, j-1] + A[i, j+1]) * 0.2

  // copy contents of A_new into A
  ...
}

Why do we keep two 
copies of A?



Abhinav Bhatele (CMSC416 / CMSC616)

2D stencil computation in parallel

6



Abhinav Bhatele (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

6



Abhinav Bhatele (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

6



Abhinav Bhatele (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

6

Ghost cells



Abhinav Bhatele (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• 2D decomposition

• Divide both rows and columns (2d blocks) 
among processes

6

Ghost cells



Abhinav Bhatele (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• 2D decomposition

• Divide both rows and columns (2d blocks) 
among processes

6

Ghost cells



Abhinav Bhatele (CMSC416 / CMSC616)

Prefix sum

• Calculate sums of prefixes (running totals) of elements (numbers) in an array

• Also called a “scan” sometimes

7

pSum[0] = A[0]

for(i=1; i<N; i++) {
    pSum[i] = pSum[i-1] + A[i]
}

1 2 3 4 5 6 …

1 3 6 10 15 21 …pSum

A



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

8

2 8 3 5 7 4 1 6



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

8

2 8 3 5 7 4 1 6

0 1 2 3 4 5 6 7Processes/ 
threads



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

8

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

0 1 2 3 4 5 6 7

Stride 1

Processes/ 
threads



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

8

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 23 19 17 18

0 1 2 3 4 5 6 7

Stride 1

Stride 2

Processes/ 
threads



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

8

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 25 29 30 36

2 10 13 18 23 19 17 18

0 1 2 3 4 5 6 7

Stride 1

Stride 2

Stride 4

Processes/ 
threads



Abhinav Bhatele (CMSC416 / CMSC616)

In practice

9



Abhinav Bhatele (CMSC416 / CMSC616)

In practice

• You have N numbers and p processes, N >> p

9



Abhinav Bhatele (CMSC416 / CMSC616)

In practice

• You have N numbers and p processes, N >> p

• Assign a N/p block to each process

• Do the serial prefix sum calculation for the blocks owned on each process locally

9



Abhinav Bhatele (CMSC416 / CMSC616)

In practice

• You have N numbers and p processes, N >> p

• Assign a N/p block to each process

• Do the serial prefix sum calculation for the blocks owned on each process locally

• Then do parallel algorithm with partial prefix sums (using the last element from each 
local block)

• Last element from sending process is added to all elements in receiving process’ sub-block

9



Abhinav Bhatele (CMSC416 / CMSC616)

The n-body problem

10

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda

• Simulate the motion of celestial objects 
interacting with one another due to 
gravitational forces

• Naive algorithm: O(n2)

• Every body calculates forces pair-wise with every other 
body (particle)



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

11



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

11

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve

Space-
filling 

curves



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

11

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve

Space-
filling 

curves



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

11

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve http://charm.cs.uiuc.edu/workshops/charmWorkshop2011/slides/CharmWorkshop2011_apps_ChaNGa.pdf

Space-
filling 

curves

ORB



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

12



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

12



Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

12

Quad-tree: not all nodes are shown



Abhinav Bhatele (CMSC416 / CMSC616)

Load balance and grain size

• Load balance: try to balance the amount of work (computation) assigned to different 
threads/ processes

• Bring ratio of maximum to average load as close to 1.0 as possible

• Secondary consideration: also load balance amount of communication

• Grain size: ratio of computation-to-communication

• Coarse-grained (more computation) vs. fine-grained (more communication)

13



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu


