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Deep neural networks

• Neural Networks (NN): Parameterized function approximators

• Can work with very high dimensional data (text, videos, audio)
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Neural Networks have a Layered Structure

• Computation organized in a sequence of layers with linear dependencies.
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Other definitions

• Learning/training: task of selecting weights that lead to an accurate function

• Loss: a scalar proxy that when minimized leads to higher accuracy

• Gradient descent: process of updating the weights using gradients (derivatives) of the 
loss weighted by a learning rate

• Batch: Small subsets of the dataset processed iteratively

• Epoch: One pass over all the mini-batches

4



Abhinav Bhatele (CMSC416 / CMSC616)

Why Parallel Deep Learning?
• Parallel Deep Learning - Training on multiple GPUs. 

Exponential 
Growth

Time to train on a single A100 
GPU on Zaratan?

172 years!!
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Networks are trained on 1000s of GPUs!

Billions of 
parameters

1000s of GPUs
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Parallel/distributed training
• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (mini-batches)

• Many layers in DNNs
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Data parallelism
• Divide training data among workers 

(GPUs) 
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• Each worker has a full copy of the entire 
NN. 

• All reduce operation to synchronize 
gradients.



Abhinav Bhatele (CMSC416 / CMSC616)

Pros and Cons of Data Parallelism

Pros

1. Embarrassingly parallel
2. Easy to implement and use

Cons

1. Cannot train models that 
exceed memory capacity of a 
single GPU.

How to train models that do not fit on a single GPU?
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Inter-layer Parallelism
• Distribute entire layers to different processes/GPUs

• Point-to-point communication (activations and gradients) between processes/GPUs 
managing different layers

10



Abhinav Bhatele (CMSC416 / CMSC616)

Pipelining in Inter-Layer Parallelism
• Layers have sequential dependencies, so only one GPU would be active at a 

time.

• Break batch into multiple shards (microbatches) and process them in a pipelined 
fashion.

Batch broken 
into 8 shards
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Intra-layer Parallelism

• Divide the work of each individual layer 
across multiple GPUs.

• Compute intensive layers involve large 
matrix multiplications.

• Intra-layer parallelism = Parallel Matrix 
multiplication.
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Hybrid parallelism

• Using two or more approaches together in the same parallel framework

• 3D parallelism: use all three

• Popular serial frameworks: pytorch, tensorflow

• Popular parallel frameworks: DDP,  FSDP, ZeRO, Megatron-LM
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Parallel Deep Learning @ PSSG

Thrust 1: Designing 
Communication Efficient 
Algorithms for Parallel 

Training on 1000s of GPUs!
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Parallel Deep Learning @ PSSG

Thrust 2: Designing User-Friendly 
Parallel DL Algorithms for Non-

HPC Experts

Serial Model Declaration Tensor Parallel Model Declaration

net = MyFavModel()
with axonn.auto_parallelize:

net = MyFavModel()
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Questions?
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