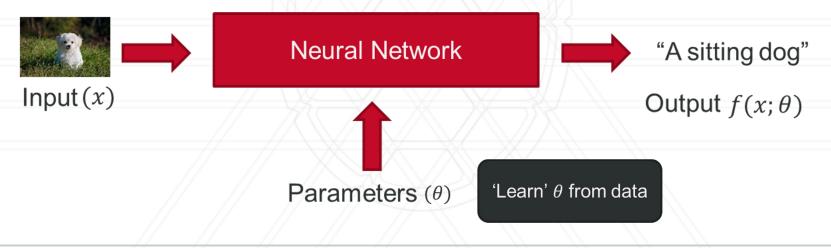
Introduction to Parallel Computing (CMSC416 / CMSC616)

Siddharth Singh, Department of Computer Science

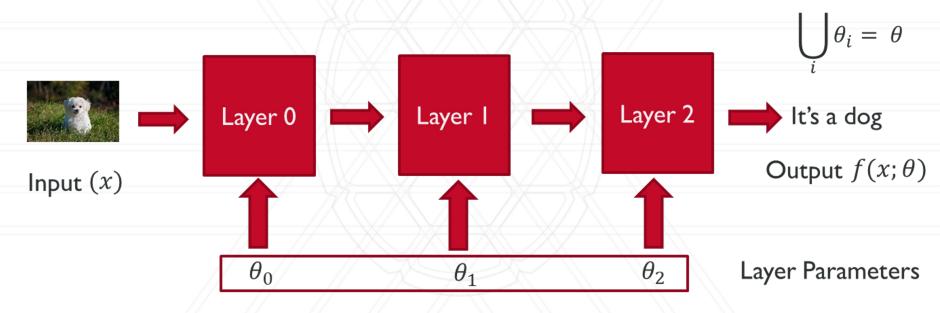
Deep neural networks

- Neural Networks (NN): Parameterized function approximators
- Can work with very high dimensional data (text, videos, audio)



Neural Networks have a Layered Structure

Computation organized in a sequence of layers with linear dependencies.

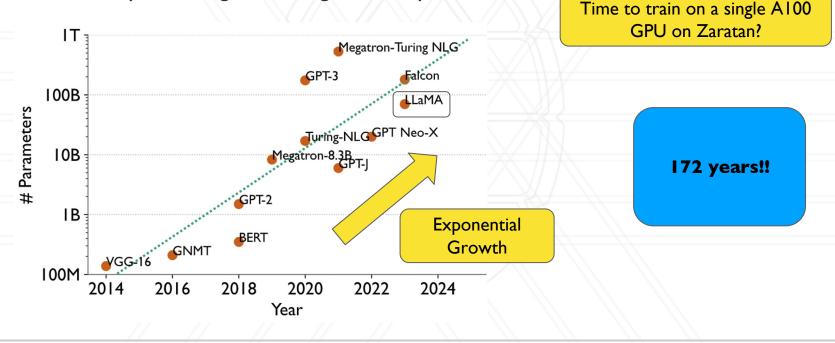


Other definitions

- Learning/training: task of selecting weights that lead to an accurate function
- Loss: a scalar proxy that when minimized leads to higher accuracy
- Gradient descent: process of updating the weights using gradients (derivatives) of the loss weighted by a learning rate
- Batch: Small subsets of the dataset processed iteratively
- Epoch: One pass over all the mini-batches

Why Parallel Deep Learning?

• Parallel Deep Learning - Training on multiple GPUs.



Networks are trained on 1000s of GPUs!

TABLE I

COMPARISON OF RECENT LARGE-SCALE LLM TRAINING STUDIES, COVERING DIVERSE FRAMEWORKS AND HARDWARE. THE TABLE DISPLAYS EACH STUDY'S MAX CHIP SCALE, CORRESPONDING MODEL & BATCH SIZE, PERCENTAGE OF PEAK FLOP/S, ALONG WITH ACTUAL PFLOP/S ACHIEVED.

Study	Framework	Model Size	Batch Size	Hardware	Scale	% Peak Flop/s	Total Pflop/s
FORGE [1]	GPT-NeoX	1.44B	16.8M	AMD MI250X	2,048 GCDs	~29%*	~112.6*
Dash et al. [2]	Megatron-DeepSpeed	1000B	19.7M	AMD MI250X	3,072 GCDs	31.9%†	188.0^{\dagger}
SUPER [3]	LBANN	3B [‡]	0.5M [‡]	NVIDIA V100	1,024 GPUs	-	-
KARMA [4]	KARMA	17B	2.0M [‡]	NVIDIA V100	2,048 GPUs	-	-
Narayan et al. [5]	Megatron-LM	1000B	6.3M	NVIDIA A100	3,072 GPUs	52%	502.0
MT-NLG [6]	Megatron-DeepSpeed	530B	4.0M	NVIDIA A100	3,360 GPUs§	36%	379.7
MegaScale [7]	MegaScale	175B	12.5M	NVIDIA A100	12,288 GPUs	55%	2166.3
Google [8]	Google Cloud TPU Multislice Training	32B	417M	TPUv5e	55,094 TPUs	44.67%	4480.0
This Work	AxoNN	40B	16.8M	NVIDIA A100	4,096 GPUs	49%	620.1
		160B	16.8M	AMD MI250X	16,384 GCDs	26%	815.7
* Estimated from	plots in the paper as e	xact numbers	not mention	ed			

ot men

t scali

[†] Calculated from flop/s at lower GPU/GCD count and weak scaling efficiency

[‡] Estimated from description in pape

[§] Authors claim training using 4480

Billions of parameters

1000s of GPUs

Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (mini-batches)
- Many layers in DNNs

Data parallelism

Divide training data among workers (GPUs) Neural Batch Shard 0 Network Copy 0 Each worker has a full copy of the entire GPU 0 NN. Batch GPU 1 Neural All reduce operation to synchronize Network gradients. Batch Shard Copy 1

Pros and Cons of Data Parallelism

Pros

Cons

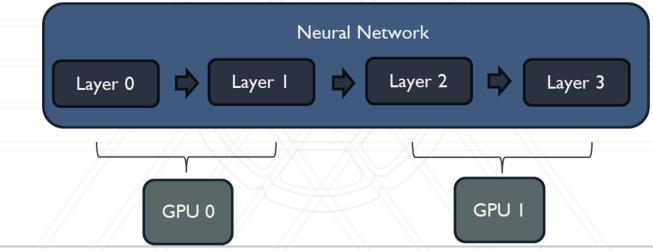
- I. Embarrassingly parallel
- 2. Easy to implement and use

 Cannot train models that exceed memory capacity of a single GPU.

How to train models that do not fit on a single GPU?

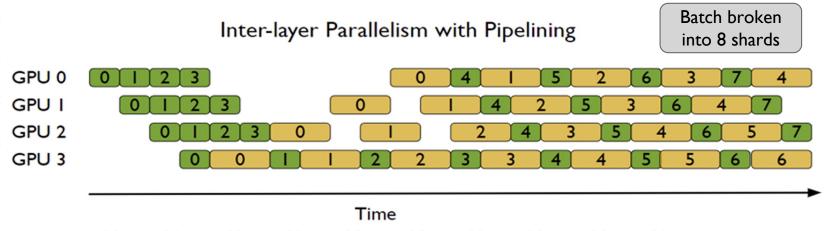
Inter-layer Parallelism

- Distribute entire layers to different processes/GPUs
- Point-to-point communication (activations and gradients) between processes/GPUs managing different layers



Pipelining in Inter-Layer Parallelism

- Layers have sequential dependencies, so only one GPU would be active at a time.
- Break batch into multiple shards (microbatches) and process them in a pipelined fashion



Intra-layer Parallelism

Divide the work of each individual layer across multiple GPUs.
Compute intensive layers involve large matrix multiplications.
Intra-layer parallelism = Parallel Matrix multiplication.

Hybrid parallelism

- Using two or more approaches together in the same parallel framework
- 3D parallelism: use all three
- Popular serial frameworks: pytorch, tensorflow
- Popular parallel frameworks: DDP, FSDP, ZeRO, Megatron-LM

Parallel Deep Learning @ PSSG

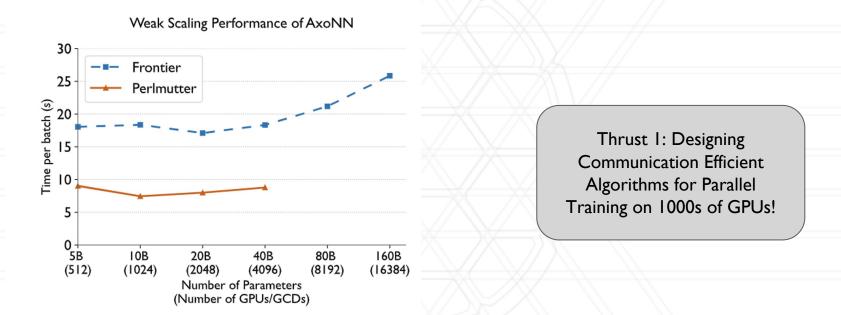
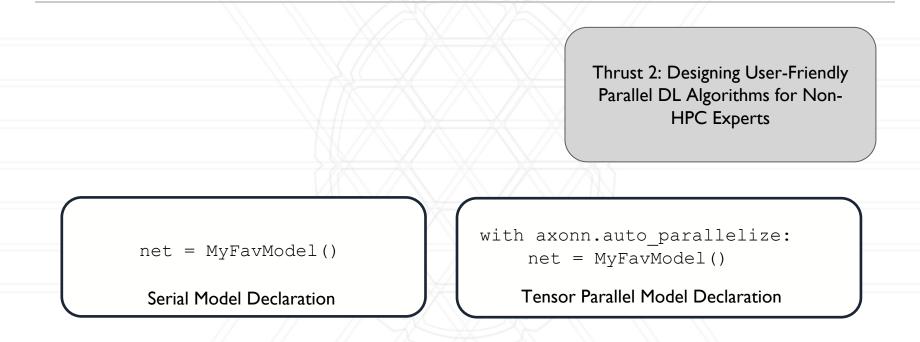


Fig. 5. Weak scaling performance (time per batch or iteration) of AxoNN on Perlmutter and Frontier.

Parallel Deep Learning @ PSSG



Questions?

UNIVERSITY OF MARYLAND

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu