CMSC 132: Object-Oriented Programming II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

Efficiency

- Amount of resources used by algorithm
 - Time, space

Measuring efficiency

- Benchmarking
- Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency
Asymptotic Analysis

- **Approach**
 - Mathematically analyze efficiency
 - Calculate time as function of input size n
 - $T \approx O(f(n))$
 - T is on the order of $f(n)$
 - “Big O” notation

- **Advantages**
 - Measures intrinsic efficiency
 - Dominates efficiency for large input sizes
Search Example

Number guessing game

- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
1. Guess number = 1
2. If incorrect, increment guess by 1
3. Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = O(n) = Linear time
Binary Search Algorithm

Algorithm

- Set Δ to $n/4$
- Guess number $= n/2$
- If too large, guess number $- \Delta$
- If too small, guess number $+ \Delta$
- Reduce Δ by $\frac{1}{2}$
- Repeat until correct
Binary Search Algorithm

Example

- Given number between 1...100
- Pick 20
- Guesses =
 - 50, $\Delta = 25$, Answer = too large, subtract Δ
 - 25, $\Delta = 12$, Answer = too large, subtract Δ
 - 13, $\Delta = 6$, Answer = too small, add Δ
 - 19, $\Delta = 3$, Answer = too small, add Δ
 - 22, $\Delta = 1$, Answer = too large, subtract Δ
 - 21, $\Delta = 1$, Answer = too large, subtract Δ
 - 20
- Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires $\log_2(n)$ guesses
- If number = n, requires $\log_2(n)$ guesses
- On average, needs $\log_2(n)$ guesses
- Time = $O(\log_2(n)) = \text{Log time}$
Search Comparison

For number between 1…100
- Simple algorithm = 50 steps
- Binary search algorithm = $\log_2(n) = 7$ steps

For number between 1…100,000
- Simple algorithm = 50,000 steps
- Binary search algorithm = $\log_2(n)$ (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/2</td>
<td>4n+3</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $n/2$ and $4n+3$ behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size

- For large values of n
 - $\text{Time}(2n) / \text{Time}(n)$ approaches exactly 2

- Both are $O(n)$ programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log₂(n)</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(\log_2(n) \) and \(5 \times \log_2(n) + 3 \) behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size

- For large values of \(n \)
 - \(\text{Time}(2n) – \text{Time}(n) \) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 \[\log_a N = \left(\log_b N \right) / \left(\log_b a \right) \]
 - Both are \(O(\log(n)) \) programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions

- \(n^2 \) and \(2n^2 + 8 \) behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of \(n \)

- \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches 4

Both are \(O(n^2) \) programs
Big-O Notation

Represents:
- Upper bound on number of steps in algorithm
- For sufficiently large input size
- Intrinsic efficiency of algorithm for large inputs

\[\text{# steps} \]

\[\text{input size} \]

\[O(\ldots) \]

\[f(n) \]
Formal Definition of Big-O

- Function $f(n)$ is $O(g(n))$ if
 - For some positive constants M, N_0
 - $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

\[5n + 1000 \Rightarrow O(n) \]

- Select \(M = 6, \ N_0 = 1000 \)
- For \(n \geq 1000 \)
 - \(6n \geq 5n+1000 \) is always true
- Example \(\Rightarrow \) for \(n = 1000 \)
 - \(6000 \geq 5000 +1000 \)
Big-O Examples

2n^2 + 10n + 1000 \Rightarrow O(n^2)

- Select M = 4, N_0 = 100
- For n \geq 100
 - 4n^2 \geq 2n^2 + 10n + 1000 is always true
- Example \Rightarrow for n = 100
 - 40000 \geq 20000 + 1000 + 1000
Observations

- Big O categories
 - \(O(\log(n)) \)
 - \(O(n) \)
 - \(O(n^2) \)

- For large values of \(n \)
 - Any \(O(\log(n)) \) algorithm is faster than \(O(n) \)
 - Any \(O(n) \) algorithm is faster than \(O(n^2) \)

- Asymptotic complexity is fundamental measure of efficiency
Comparison of Complexity

A Comparison of Orders

- n
- $\frac{1}{2}n^2$
- n^3

Graph showing the comparison of orders n, $\frac{1}{2}n^2$, and n^3.
Complexity Category Example

![Graph showing complexity categories]

- 2^n
- n^2
- $n \log(n)$
- n
- $\log(n)$

The graph illustrates the number of solution steps for different problem sizes and complexity categories.
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2^n</td>
</tr>
<tr>
<td>2</td>
<td>n^2</td>
</tr>
<tr>
<td>3</td>
<td>nlog(n)</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
</tr>
<tr>
<td>5</td>
<td>log(n)</td>
</tr>
</tbody>
</table>

Graph showing the relationship between problem size and solution steps for different complexity categories: 2^n, n^2, $n\log(n)$, n, and $\log(n)$.
Calculating Asymptotic Complexity

- As \(n \) increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms

Examples

- \(2n + 100 \) \(\implies \) \(O(n) \)
- \(n \log(n) + 10n \) \(\implies \) \(O(n\log(n)) \)
- \(\frac{1}{2}n^2 + 100n \) \(\implies \) \(O(n^2) \)
- \(n^3 + 100n^2 \) \(\implies \) \(O(n^3) \)
- \(\frac{1}{100}2^n + 100n^4 \) \(\implies \) \(O(2^n) \)
Complexity Examples

$2n + 100 \Rightarrow O(n)$
Complexity Examples

\[\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n \log(n)) \]
Complexity Examples

\[\frac{1}{2} n^2 + 100 \, n \Rightarrow O(n^2) \]
Complexity Examples

$\frac{1}{100} \ 2^n + 100 \ n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Types of Case Analysis

Best case

- Smallest number of steps required
- Not very useful
- Example ⇒ Find item in first place checked
Types of Case Analysis

- Worst case
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example \Rightarrow Find item in last place checked
Quicksort Example

Quicksort
- One of the fastest comparison sorts
- Frequently used in practice

Quicksort algorithm
- Pick pivot value from list
- Partition list into values smaller & bigger than pivot
- Recursively sort both lists
Quicksort Example

Quicksort properties

- Average case = $O(n \log(n))$
- Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list

Can avoid worst-case behavior

- Select random pivot value
Types of Case Analysis

Average case
- Number of steps required for “typical” case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
Approaches to Average Case

Average case
- **Average over all possible inputs**
 - Assumes all inputs have the same probability
- **Example**
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

Expected case
- **Weighted average over all possible inputs**
 - Based on probability of each input
- **Example**
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

Approach
- Applies to worst-case sequences of operations
- Finds average running time per operation

Example
- Normal case = 10 steps
- Every 10th case may require 20 steps
- Amortized time = 11 steps

Assumptions
- Can predict possible sequence of operations
- Know when worst-case operations are needed
 - Does not require knowledge of probability
Amortization Example

Adding numbers to end of array of size k
- If array is full, allocate new array
 - Allocation cost is $O(\text{size of new array})$
 - Copy over contents of existing array

Two approaches
- Non-amortized
 - If array is full, allocate new array of size $k+1$
- Amortized
 - If array is full, allocate new array of size $2k$
 - Compare their allocation cost
Amortization Example

Non-amortized approach

Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Total cost ⇒ n(n+1)/2

Case analysis

Best case ⇒ allocation cost = k
Worse case ⇒ allocation cost = k
Amortized case ⇒ allocation cost = (n+1)/2
Amortization Example

- Amortized approach
 - Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Total cost ⇒ 2 (n – 1)

Case analysis
- Best case ⇒ allocation cost = 0
- Worse case ⇒ allocation cost = 2(k – 1)
- Amortized case ⇒ allocation cost = 2

- An individual step might take longer, but faster for any sequence of operations