Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

Code (for input size \(n \))

1. A
2. for (int i = 0; i < n; i++)
3. B
4. C

Code execution

- A \(\Rightarrow \) once
- B \(\Rightarrow \) n times
- C \(\Rightarrow \) once

Time \(\Rightarrow 1 + n + 1 = O(n) \)
Critical Section Example 2

Code (for input size n)

1. A
2. for (int $i = 0$; $i < n$; $i++$)
3. B
4. for (int $j = 0$; $j < n$; $j++$)
5. C
6. D

Code execution

- A \Rightarrow once
- B \Rightarrow n times
- C \Rightarrow n2 times
- D \Rightarrow once

Time $\Rightarrow 1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

Code (for input size n)

1. A
2. for (int $i = 0$; $i < n$; $i++$)
3. for (int $j = i+1$; $j < n$; $j++$)
4. B

Code execution

A \Rightarrow once
B $\Rightarrow \frac{1}{2} n (n-1)$ times

Time $\Rightarrow 1 + \frac{1}{2} n^2 = O(n^2)$
Critical Section Example 4

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. for (int j = 0; j < 10000; j++)
4. B

Code execution

- A \Rightarrow once
- B \Rightarrow 10000 n times

Time $\Rightarrow 1 + 10000 \ n = O(n)$
Critical Section Example 5

Code (for input size n)
1. for (int $i = 0; i < n; i++$)
2. for (int $j = 0; j < n; j++$)
3. A
4. for (int $i = 0; i < n; i++$)
5. for (int $j = 0; j < n; j++$)
6. B

Code execution
- $A \Rightarrow n^2$ times
- $B \Rightarrow n^2$ times

Time $\Rightarrow n^2 + n^2 = O(n^2)$
Critical Section Example 6

Code (for input size n)
1. $i = 1$
2. while ($i < n$)
3. A
4. $i = 2 \times i$
5. B

Code execution
- A $\Rightarrow \log(n)$ times
- B $\Rightarrow 1$ times

Time $\Rightarrow \log(n) + 1 = O(\log(n))$
Critical Section Example 7

Code (for input size \(n \))

1. \textbf{DoWork (int n)}
2. \textbf{if (n == 1)}
3. \textbf{A}
4. \textbf{else}
5. \textbf{DoWork(n/2)}
6. \textbf{DoWork(n/2)}

Code execution

- \textbf{A} \Rightarrow 1 \text{ times}
- \textbf{DoWork(n/2)} \Rightarrow 2 \text{ times}

- \textbf{Time(1)} \Rightarrow 1 \quad \text{Time(n)} = 2 \times \text{Time(n/2)} + 1
Recursive Algorithms

Definition
- An algorithm that calls itself

Components of a recursive algorithm
1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size \(n \))

1. \textbf{DoWork (int n)}
2. \textbf{if (n == 1)}
3. \textbf{A}
4. \textbf{else}
5. \textbf{DoWork(n/2)}
6. \textbf{DoWork(n/2)}
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(n^k)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(k^n)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
</tbody>
</table>

From smallest to largest

For size n, constant $k > 1$
Comparing Complexity

- Compare two algorithms
 - $f(n), g(n)$

- Determine which increases at faster rate
 - As problem size n increases

- Can compare ratio

 - If ∞, $f()$ is larger
 - $\lim_{n \to \infty} \frac{f(n)}{g(n)}$
 - If 0, $g()$ is larger
 - If constant, then same complexity
Complexity Comparison Examples

- **log(n) vs. n^{1/2}**

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{\log(n)}{n^{1/2}} \quad \rightarrow \quad 0
\]

- **1.001^n vs. n^{1000}**

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \quad \rightarrow \quad ??
\]

Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - Big-O \(\Rightarrow O(\ldots) \)
 - Represents upper bound on \# steps

- **Lower bound**
 - Big-Omega \(\Rightarrow \Omega(\ldots) \)
 - Represents lower bound on \# steps

- **Combined bound**
 - Big-Theta \(\Rightarrow \Theta(\ldots) \)
 - Represents combined upper/lower bound on \# steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

Problem

\[C = A \times B \]

Lower bound

\[\Omega(n^2) \]

Required to examine 2D matrix

Upper bounds

\[\mathcal{O}(n^3) \]

Basic algorithm

\[\mathcal{O}(n^{2.807}) \]

Strassen’s algorithm (1969)

\[\mathcal{O}(n^{2.376}) \]

Coppersmith & Winograd (1987)

Improvements still possible (open problem)

Since upper & lower bounds do not match
Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time (NP)</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

Mostly of academic interest only

- Quadratic algorithms usually too slow for large data
- Use fast heuristics to provide non-optimal solutions
NP Time Algorithm

- Polynomial solution possible
 - If make correct guesses on how to proceed
- Required for many fundamental problems
 - Boolean satisfiability
 - Traveling salesman problem (TLP)
 - Bin packing
- Key to solving many optimization problems
 - Most efficient trip routes
 - Most efficient schedule for employees
 - Most efficient usage of resources
NP Time Algorithm

Properties of NP
- Can be solved with exponential time
- Not proven to require exponential time
- Currently solve using heuristics

NP-complete problems
- Representative of all NP problems
- Solution can be used to solve any NP problem

Examples
- Boolean satisfiability
- Traveling salesman
P = NP?

Are NP problems solvable in polynomial time?

- Prove P=NP
 - Show polynomial time solution exists for any NP-complete problem
- Prove P≠NP
 - Show no polynomial-time solution possible
 - The expected answer

Important open problem in computer science
- $1 million prize offered by Clay Math Institute
Algorithmic Complexity Summary

- Asymptotic complexity
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform

- Learned how to
 - Examine program
 - Find critical sections
 - Calculate complexity of algorithm
 - Compare complexity