CMSC 132: Object-Oriented Programming II

Bags, Markov Chains, and Random Text Generation

Department of Computer Science
University of Maryland, College Park
Random Text Generation Project

Goal
- Read in text
- Generate similar semi-random text

Approach
1. Build DenseBag to store word frequencies
2. Use DenseBag to build Markov chain
3. Use Markov chain to generate semi-random text
Properties

- Like a Set
- But can contain duplicates

Examples

- \{ 1, 3, 1, 1, 3, 5 \}
- \{ 1, 1, 1, 3, 3, 5 \}
- \{ three 1’s, two 3’s, one 5 \}
- All represent same DenseBag
DenseBag\(<E>\) Operations

Operations supported

- Set\(<E>\) `getUniqueElements()`
- `int getCount(E e)`
- `E choose(Random r)`

Examples

- **Given DenseBag\(<Integer>\) `x = \{ 1, 1, 1, 3, 3, 5 \};`**
 - `x. getUniqueElements()` → `\{ 1, 3, 5 \}`
 - `x. getCount(1)` → 3
 - `x. choose(r)` → 1 (50%), 3 (33%) or 5 (17%)
DenseBag<E> Operations

Efficiency
- Most operations should take $O(1)$
 - If using hashing
 - choose(Random r) may take $O(|\text{unique items}|)$

Iterator
- Iterates over all elements
- Order is undefined
Markov Chain

Definition
- A series of states with the **Markov property**
- Where probability of future states depends only upon the present state and not on any past states

Example
- Probability of X going to S_1 or S_2 is independent of whether P_1 or P_2 originally moved to X

Used in
- Statistical machine learning (artificial intelligence)
Markov Chain

Application
- Can represent probability of word following each word

Example
- In the text “a b a c a b a b”
 - Word a is followed by b (75%) or c (25%)
- Represent with following Markov chain
Higher-Order Markov Chain

Application

- Can represent probability of word following each group of words

Example

- In the text “a b a c a b a b”
 - Word a b is followed by a (100%)
 - Word b a is followed by b (50%) or c (50%)

- Represent with following Markov chain
DenseBag → Markov Chain

DenseBag can represent Markov chain
- Contains output in proportion to probability

Example
- Markov chain → DenseBag

\[a \xrightarrow{75\%} b, b, b, c \]
\[a \xrightarrow{25\%} c \]
Markov Text Generation

Approach

1. Generate higher order Markov chains
 - “Train” on actual text data
2. Represent Markov chain as DenseBags
3. Connect DenseBags
 - To build probabilistic transition table
4. Use transition table to generate text