CMSC 132:
Object-Oriented Programming II

Sorting

Department of Computer Science
University of Maryland, College Park
Overview

- Comparison sort
 - Bubble sort
 - Selection sort
 - Tree sort
 - Heap sort
 - Quick sort
 - Merge sort

 \[O(n^2) \]

- Linear sort
 - Counting sort
 - Bucket (bin) sort
 - Radix sort

 \[O(n) \]
Sorting

Goal
- Arrange elements in predetermined order
 - Based on key for each element
 - Derived from ability to compare two keys by size

Properties
- Stable \Rightarrow relative order of equal keys unchanged
 - Stable: $3, 1, 4, 3, 3, 2 \rightarrow 1, 2, 3, 3, 3, 4$
 - Unstable: $3, 1, 4, 3, 3, 2 \rightarrow 1, 2, 3, 3, 3, 4$
- In-place \Rightarrow uses only constant additional space
- External \Rightarrow can efficiently sort large # of keys
Sorting

Comparison sort
- Only uses pairwise key comparisons
- Proven lower bound of $O(n \log(n))$

Linear sort
- Uses additional properties of keys
Bubble Sort

Approach
1. Iteratively sweep through shrinking portions of list
2. Swap element x with its right neighbor if x is larger

Performance
- $O(n^2)$ average / worst case
Bubble Sort Example

Sweep 1

```
7 2 8 5 4
2 7 8 5 4
2 7 8 5 4
2 7 5 8 4
2 7 5 4 8
```

Sweep 2

```
2 7 5 4 8
2 7 5 4 8
2 5 7 4 8
2 5 4 7 8
2 4 5 7 8
```

Sweep 3

```
2 5 4 7 8
2 5 4 7 8
2 4 5 7 8
2 4 5 7 8
```

Sweep 4

```
2 4 5 7 8
2 4 5 7 8
2 4 5 7 8
2 4 5 7 8
```
void bubbleSort(int[] a) {
 int outer, inner;
 for (outer = a.length - 1; outer > 0; outer--)
 for (inner = 0; inner < outer; inner++)
 if (a[inner] > a[inner + 1])
 swap(a, inner, inner+1);
}

void swap(int a[], int x, int y) {
 int temp = a[x];
 a[x] = a[y];
 a[y] = temp;
}
Selection Sort

Approach

1. Iteratively sweep through shrinking portions of list
2. Select smallest element found in each sweep
3. Swap smallest element with front of current list

Performance

- O(n^2) average / worst case
void selectionSort(int[] a) {
 int outer, inner, min;
 for (outer = 0; outer < a.length - 1; outer++) {
 min = outer;
 for (inner = outer + 1; inner < a.length; inner++) {
 if (a[inner] < a[min]) {
 min = inner;
 }
 }
 swap(a, outer, min);
 }
}
Tree Sort

Approach
1. Insert elements in binary search tree
2. List elements using inorder traversal

Performance
- Binary search tree
 - $O(n \log(n))$ average case
 - $O(n^2)$ worst case
- Balanced binary search tree
 - $O(n \log(n))$ average / worst case

Example
- Binary search tree
- {7, 2, 8, 5, 4}
Heap Sort

Approach
1. Insert elements in heap
2. Remove smallest element in heap, repeat
3. List elements in order of removal from heap

Performance
- $O(n \log(n))$ average / worst case

Example
Heap

{ 7, 2, 8, 5, 4 }
Quick Sort

Approach
1. Select pivot value (near median of list)
2. Partition elements (into 2 lists) using pivot value
3. Recursively sort both resulting lists
4. Concatenate resulting lists
 - For efficiency pivot needs to partition list evenly

Performance
- $O(n \log(n))$ average case
- $O(n^2)$ worst case
Quick Sort Algorithm

1. If list below size K
 - Sort w/ other algorithm
2. Else pick pivot x and partition S into
 - L elements $< x$
 - E elements $= x$
 - G elements $> x$
3. Quicksort L & G
4. Concatenate L, E & G
 - If not sorting in place
Quick Sort Code

```c
void quickSort(int[] a, int x, int y) {
    int pivotIndex;
    if ((y - x) > 0) {
        pivotIndex = partionList(a, x, y);
        quickSort(a, x, pivotIndex - 1);
        quickSort(a, pivotIndex+1, y);
    }
}

int partionList(int[] a, int x, int y) {
    ... // partitions list and returns index of pivot
}
```
Quick Sort Example

Partition & Sort

Result
Quick Sort Code

```c
int partitionList(int[] a, int x, int y) {
    int pivot = a[x];
    int left = x;
    int right = y;
    while (left < right) {
        while ((a[left] < pivot) && (left < right))
            left++;
        while (a[right] > pivot)
            right--;
        if (left < right)
            swap(a, left, right);
    }
    swap(a, x, right);
    return right;
}
```

Use first element as pivot

Partition elements in array relative to value of pivot

Place pivot in middle of partitioned array

return index of pivot
Merge Sort

Approach

1. Partition list of elements into 2 lists
2. Recursively sort both lists
3. Given 2 sorted lists, **merge** into 1 sorted list
 a) Examine head of both lists
 b) Move smaller to end of new list

Performance

- O(n log(n)) average / worst case
Merge Example

2 7

4 5 8

2

4 5 8

7

2 4

5 8

2 4 5

7 8

2 4 5 7

8

2 4 5 7 8
Merge Sort Example

Split

Merge
void mergeSort(int[] a, int x, int y) {
 int mid = (x + y) / 2;
 if (y == x) return;
 mergeSort(a, x, mid);
 mergeSort(a, mid+1, y);
 merge(a, x, y, mid);
}

void merge(int[] a, int x, int y, int mid) {
 ... // merges 2 adjacent sorted lists in array
}
void merge (int[] a, int x, int y, int mid) {
 int size = y - x;
 int left = x;
 int right = mid+1;
 int[] tmp; int j;
 for (j = 0; j < size; j++) {
 if (left > mid) tmp[j] = a[right++];
 else if (right > y) || (a[left] < a[right])
 tmp[j] = a[left++];
 else tmp[j] = a[right++];
 }
 for (j = 0; j < size; j++)
 a[x+j] = tmp[j];
}
Counting Sort

Approach
1. Sorts keys with values over range 0..k
2. Count number of occurrences of each key
3. Calculate # of keys ≤ each key
4. Place keys in sorted location using # keys counted
 - If there are x keys ≤ key y
 - Put y in xth position
 - Decrement x in case more instances of key y

Properties
- O(n + k) average / worst case
Counting Sort Example

Original list

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>8</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Count

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Calculate # keys ≤ value

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Counting Sort Example

Assign locations

```
0  0  1  1  2  3  3  4  5
0  1  2  3  4  5  6  7  8
```

```
7  2  8  5  4
4-1 = 3
4  
0  1  2  3  4

7  2  8  5  4
5-1 = 4
2  3  7  8
0  1  2  3  4

7  2  8  5  4
2-1 = 1
2  4  5  7  8
0  1  2  3  4
```

```
7  2  8  5  4
1-1 = 0
2  7
0  1  2  3  4

7  2  8  5  4
3-1 = 2
2  5  7  8
0  1  2  3  4
```
Counting Sort Code

```c
void countSort(int[] a, int k) {
    int[] b; int[] c; int i;
    for (i = 0; i ≤ k; i++) // initialize counts
        c[i] = 0;
    for (i = 0; i < a.size(); i++) // count # keys
        c[a[i]]++;
    for (i = 1; i ≤ k; i++) // calculate # keys ≤ value i
        c[i] = c[i] + c[i-1]
    for (i = a.size()-1; i > 0; i--) {
        // move key to location
        b[c[a[i]]-1] = a[i];
        // decrement # keys ≤ a[i]
        c[a[i]]--;
    }
    for (i = 0; i < a.size(); i++) // copy sorted list back to a
        a[i] = b[i];
}
```
Bucket (Bin) Sort

Approach
1. Divide key interval into k equal-sized subintervals
2. Place elements from each subinterval into bucket
3. Sort buckets (using other sorting algorithm)
4. Concatenate buckets in order

Properties
- Pick large k so can sort n / k elements in O(1) time
- O(n) average case
- O(n²) worst case
 - If most elements placed in same bucket and sorting buckets with O(n²) algorithm
Bucket Sort Example

1. Original list
 - 623, 192, 144, 253, 152, 752, 552, 231

2. Bucket based on 1st digit, then sort bucket
 - 192, 144, 152 \Rightarrow 144, 152, 192
 - 253, 231 \Rightarrow 231, 253
 - 552 \Rightarrow 552
 - 623 \Rightarrow 623
 - 752 \Rightarrow 752

3. Concatenate buckets
 - 144, 152, 192, 231, 253, 552, 623, 752
Radix Sort

Approach

1. Decompose key C into components C_1, C_2, \ldots, C_d
 - Component d is least significant
 - Each component has values over range $0..k$
2. For each key component $i = d$ down to 1
 - Apply linear sort based on component C_i
 (sort must be stable)

Example key components
- Letters (string), digits (number)

Properties
- $O(d \times (n+k)) \approx O(n)$ average / worst case
Radix Sort Example

1. Original list
 - 623, 192, 144, 253, 152, 752, 552, 231

2. Sort on 3rd digit (counting sort from 0-9)
 - 231, 192, 152, 752, 552, 623, 253, 144

3. Sort on 2nd digit (counting sort from 0-9)
 - 623, 231, 144, 152, 752, 552, 253, 192

4. Sort on 1st digit (counting sort from 0-9)
 - 144, 152, 192, 231, 253, 552, 623, 752

Compare with: counting sort from 144-752
Sorting Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Comparison Sort</th>
<th>Avg Case Complexity</th>
<th>Worst Case Complexity</th>
<th>In Place</th>
<th>Can be Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble</td>
<td>✓</td>
<td>O(n²)</td>
<td>O(n²)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Selection</td>
<td>✓</td>
<td>O(n²)</td>
<td>O(n²)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tree</td>
<td>✓</td>
<td>O(n log(n))</td>
<td>O(n²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heap</td>
<td>✓</td>
<td>O(n log(n))</td>
<td>O(n log(n))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick</td>
<td>✓</td>
<td>O(n log(n))</td>
<td>O(n²)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td>✓</td>
<td>O(n log(n))</td>
<td>O(n log(n))</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Counting</td>
<td></td>
<td>O(n)</td>
<td>O(n)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Bucket</td>
<td></td>
<td>O(n)</td>
<td>O(n²)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Radix</td>
<td></td>
<td>O(n)</td>
<td>O(n)</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Sorting Summary

- Many different sorting algorithms
- Complexity and behavior varies
- Size and characteristics of data affect algorithm