CMSC 250
Discrete Structures

Set Theory
Sets

Definition of a Set:
- NAME = \{list or description of elements\}
- Examples
 - B = \{1,2,3\}
 - C = \{x \in \mathbb{Z}^+ \mid -4 < x < 4\}

Axiom of Extension
- A set of elements is completely defined by elements, regardless of order and duplicates
- Example: \{a,b\} = \{b,a\} = \{a,b,a\} = \{a,b,a,b,b,a\}
Notation

- Sets defined by property
 - $C = \{x \in \mathbb{Z}^+ \mid -4 < x < 4\}$
 - $C = \{1,2,3,4\}$

- Consider elements: glue, tape, pen
 - Sets are not equivalent to elements
 - $\{\text{glue}\} \neq \text{glue}$
 - Sets can be elements of other sets
 - $\{\text{pen}, \{\text{glue, tape}\}\}$
Subset

- \(A \subseteq B \iff \forall x \in U, x \in A \rightarrow x \in B \)
 - A is contained in B
 - B contains A

- \(A \nsubseteq B \iff \exists x \in U, x \in A \land x \notin B \)

Relationship between membership and subset:
 - \(\forall x \in U, x \in A \iff \{x\} \subseteq A \)

Definition of set equality:
 - \(A = B \iff A \subseteq B \land B \subseteq A \)
Same Set or Not???

\[X = \{ x \in \mathbb{Z} \mid \exists p \in \mathbb{Z}, \ x = 2p \} \]
\[Y = \{ y \in \mathbb{Z} \mid \exists q \in \mathbb{Z}, \ y = 2q - 2 \} \]

\[A = \{ x \in \mathbb{Z} \mid \exists i \in \mathbb{Z}, \ x = 2i + 1 \} \]
\[B = \{ x \in \mathbb{Z} \mid \exists i \in \mathbb{Z}, \ x = 3i + 1 \} \]
\[C = \{ x \in \mathbb{Z} \mid \exists i \in \mathbb{Z}, \ x = 4i + 1 \} \]
\[\in \text{ Versus } \subseteq \]

- glue \(\in \) \{glue, tape, pen\}
- \{glue\} \(\subseteq \) \{glue, tape, pen\}
- \{glue\} \(\in \) \{{glue\}, \{tape\}, pen\}
- \{glue\} \(\not\subseteq \) \{{glue\}, \{tape\}, pen\}
Sets

- $C = \{x \mid x > -4 \text{ and } x < 4\}$
- $C = \{x \in \mathbb{Z}^+ \mid x > -4 \text{ and } x < 4\}$
 - What is the first element?
Set Operations
Formal Definitions and Venn Diagrams

Union:
\[A \cup B = \{ x \in U \mid x \in A \lor x \in B \} \]

Intersection:
\[A \cap B = \{ x \in U \mid x \in A \land x \in B \} \]

Complement:
\[A^c = A' = \{ x \in U \mid x \notin A \} \]

Difference:
\[A - B = \{ x \in U \mid x \in A \land x \notin B \} \]
\[A - B = A \cap B' \]
Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

1. \(x \in (X \cup Y) \iff x \in X \text{ or } x \in Y \)
2. \(x \in (X \cap Y) \iff x \in X \text{ and } x \in Y \)
3. \(x \in (X - Y) \iff x \in X \text{ and } x \notin Y \)
4. \(x \in X^c \iff x \notin X \)
5. \((x,y) \in (X \times Y) \iff x \in X \text{ and } y \in Y \)
Venn Diagrams

- \(A = \{1,2,5,7\} \); \(B = \{1,5\} \); \(C = \{3,7\} \)
- \(U = \{1,2,3,4,5,6,7\} \)

\(B \subseteq A \)
Venn Diagram for \mathbb{R}, \mathbb{Z}, \mathbb{Q}
Ordered n-Tuple

- **Ordered n-tuple** — takes order and multiplicity into account

- $(x_1, x_2, x_3, \ldots, x_n)$
 - n values
 - not necessarily distinct
 - in the order given

- $(x_1, x_2, x_3, \ldots, x_n) = (y_1, y_2, y_3, \ldots, y_n)$
 \[\iff \forall i \in \mathbb{Z}, 1 \leq i \leq n, \ x_i = y_i \]

- **Examples**
 - $\{a, b\} = \{b, a\}$
 - $\{(a, b)\} \neq \{(b, a)\}$
 - Cartesian coordinate system
Cartesian Product

\[A \times B = \{(a, b) \mid a \in A \land b \in B\} \]

- Example
 - \(A = \{x, y, z\} \)
 - \(B = \{5, 7\} \)
 - \(C = \{a, b\} \)

- \(A \times B \times C \neq (A \times B) \times C \)
Empty Set Properties

1. \emptyset is a subset of every set.
2. There is only one empty set.
3. The union of any set with \emptyset is that set.
4. The intersection of any set with its own complement is \emptyset.
5. The intersection of any set with \emptyset is \emptyset.
6. The Cartesian Product of any set with \emptyset is \emptyset.
7. The complement of the universal set is \emptyset and the complement of the empty set is the universal set.
Other Definitions

- **Proper Subset**

\[A \subset B \iff A \subseteq B \land A \neq B \]

- **Disjoint Set**: A and B are disjoint

\[\iff A \text{ and } B \text{ have no elements in common} \]

\[\iff \forall x \in U, \, x \in A \rightarrow x \notin B \land x \in B \rightarrow x \notin A \]

\[A \cap B = \emptyset \iff A \text{ and } B \text{ are Disjoint Sets} \]
Partitions of a Set

- A collection of nonempty sets \(\{A_1, A_2, \ldots, A_n\} \) is a partition of the set \(A \)
- If and only if
 1. \(A = A_1 \cup A_2 \cup \ldots \cup A_n \)
 2. \(A_1, A_2, \ldots, A_n \) are mutually disjoint
Power Sets

Power set of A = \(\mathcal{P}(A) \) = Set of all subsets of A

- Example: A={a,b,c}
- Can also think of as a truth table ...

- Prove that
 - \(\forall A, B \in \{\text{sets}\}, A \subseteq B \rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B) \)
- Prove that (where n(X) means the size of set X)
 - \(\forall A \in \{\text{sets}\}, n(A) = k \rightarrow n(\mathcal{P}(A)) = 2^k \)
Edwards-Venn Diagram
Properties of Sets (Theorems 5.2.1 & 5.2.2)

- **Inclusion**
 \[A \cap B \subseteq A \quad A \cap B \subseteq B \]
 \[A \subseteq A \cup B \quad B \subseteq A \cup B \]

- **Transitivity**
 \[A \subseteq B \land B \subseteq C \rightarrow A \subseteq C \]

- **DeMorgan’s for Complement**
 \[(A \cup B)' = A' \cap B' \quad (A \cap B)' = A' \cup B' \]

- **Distribution of union and intersection**
 \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
 \[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]
Element Argument

- Basic Method for proving that one set is a subset of another

- Let sets X and Y be given. To prove $X \subseteq Y$,
 - Suppose that x is a particular but arbitrarily chosen element of X,
 - Show that x is an element of Y.
Set Equality

- Two sets A and B are equal, if and only if, they have the same exact elements.
- Expressed as:
 - $A=B \iff A \subseteq B$ and $B \subseteq A$
 - $A=B \iff (\forall x \in A, x \in B) \land (\forall x \in B, x \in A)$
 - $A=B \iff \forall x \in U, (x \in A \rightarrow x \in B \land x \in B \rightarrow x \in A)$
 - $A=B \iff (\forall x \in U, x \in A \rightarrow x \in B) \land (\forall x \in U, x \in B \rightarrow x \in A)$
Prove $A = C$

$A = \{ n \in \mathbb{Z} \mid \exists p \in \mathbb{Z}, \ n = 2p \}$

$C = \{ m \in \mathbb{Z} \mid \exists q \in \mathbb{Z}, \ m = 2q-2 \}$
Does $A = D$

$A = \{ x \in \mathbb{Z} \mid \exists p \in \mathbb{Z}, x = 2p \}$

$D = \{ y \in \mathbb{Z} \mid \exists q \in \mathbb{Z}, y = 3q + 1 \}$

Easy to disprove universal statements!
Prove \(A - B = A - (A \cap B) \)

- **LHS**: \(A - B = \{x \in U \mid x \in A \land x \notin B\} \)
- **RHS**: \(A - (A \cap B) \)

 \[
 = \{x \in U \mid x \in A \land x \notin (A \cap B)\}

 = \{x \in U \mid x \in A \land x \notin (A \cap B)'\}

 = \{x \in U \mid x \in A \land x \in (A' \cup B')\}

 = \{x \in U \mid x \in A \land (x \in A' \lor x \in B')\}

 = \{x \in U \mid (x \in A \land x \in A') \lor (x \in A \land x \in B')\}

 = \{x \in U \mid FALSE \lor (x \in A \land x \in B')\}

 = \{x \in U \mid x \in A \land x \in B'\}

 = \{x \in U \mid x \in A \land x \notin B\}

 = \text{LHS} = \text{RHS} \]
Prove $A \cap B \subseteq A$

- \forall sets $A,B \ \forall x \in U \ x \in (A \cap B) \rightarrow x \in A$

- Choose generic sets A, B and element $x \in U$

- Assume $x \in (A \cap B)$
 - $x \in A \land x \in B$ (by def of intersection “\cap”)
 - $x \in A$ (by conjunctive simplification)

- $x \in (A \cap B) \rightarrow x \in A$ (by closing cond. world)

- \forall sets $A,B \ \forall x \in U \ x \in (A \cap B) \rightarrow x \in A$
Using Venn Diagrams to help find counter example

\[(A \cup B) \cap C = ? = A \cup (B \cap C)\]

\[A \cup (B \cap C) = ? = (A \cap B) \cup (A \cap C)\]

\[A \cup (B \cap C) = ? = (A \cap B) \cap C\]
Deriving new Properties using rules and Venn diagrams

\[(A - B) \text{ and } (B - A) \text{ are disjoint}\]

\[A - B = A - (A \cap B)\]

\[A \subseteq B \land A \subseteq C \rightarrow A \subseteq (B \cap C)\]
Formal Languages

- Σ = alphabet = a finite set of symbols
- string over $\Sigma =$
 - empty (or null) string denoted as ε
 - OR
 - ordered n-tuple of elements
- Σ^n = set of strings of length n
- Σ^* = set of all finite length strings

$L = \{s \mid s = a^i b^i a^i \text{ for } i \in \mathbb{Z}_{\geq 0}\}$ = ?