Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

Efficiency

- Amount of resources used by algorithm
 - Time, space

Measuring efficiency

- Benchmarking
- Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages

- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages

- Affected by configuration
 - Data sets (often too small)
 - a dataset that was the right size 3 years ago is likely too small now

- Hardware
- Software

- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency
Asymptotic Analysis

Approach

- Mathematically analyze efficiency
- Calculate time as function of input size \(n \)

\[T \approx O(f(n)) \]

- \(T \) is on the order of \(f(n) \)
- “Big O” notation

Advantages

- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
- Programming language, compiler, processor irrelevant
Search Example

- **Number guessing game**
 - Pick a number between 1…n
 - Guess a number
 - Answer “correct”, “too high”, “too low”
 - Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
- Guess number = 1
- If incorrect, increment guess by 1
- Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = $O(n) = \text{Linear time}$
Binary Search Algorithm

Algorithm

- Set low and high to be lowest and highest possible value
- Guess middle = (low+high)/2
- If too large, set high = middle-1
- If too small, set low = middle+1
- Repeat until guess correct
Binary Search Algorithm

Example

- Given number between 1…100
- secret number we are trying to find is 20

Guesses

- low = 1, high = 100, guess 50, Answer = too large
- low = 1, high = 49, guess 25, Answer = too large
- low = 1, high = 24, guess 12, Answer = too small
- low = 13, high = 24, guess 18, Answer = too small
- low = 19, high = 24, guess 21, Answer = too large
- low = 19, high = 20, guess 19, Answer = too small
- low = 20, high = 20, guess 20, Answer = correct

Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires $\log_2(n)$ guesses
- If number = n, requires $\log_2(n)$ guesses
- On average, needs $\log_2(n)$ guesses
- Time = $O(\log_2(n)) = O(\log(n)) = \text{Log time}$
Search Comparison

- For number between 1…100
 - Simple algorithm = 50 steps
 - Binary search algorithm = $\log_2(n) = 7$ steps

- For number between 1…100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = $\log_2(n)$ (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(\frac{n}{2}\) and \(4n + 3\) behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases **linearly** with input size

- For large values of \(n\)
 - \(\frac{\text{Time}(2n)}{\text{Time}(n)}\) approaches exactly 2

- Both are \(O(n)\) programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\log_2(n)$</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Comparing two functions

- $\log_2(n)$ and $5 \times \log_2(n) + 3$ behave similarly.
- Run time roughly increases by constant as input size doubles.
- Run time increases logarithmically with input size.

For large values of n:

- $\text{Time}(2n) - \text{Time}(n)$ approaches constant.
- Base of logarithm does not matter.
 - Simply a multiplicative factor: $\log_a N = (\log_b N) / (\log_b a)$.
- Both are $O(\log(n))$ programs.
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions
- n^2 and $2n^2 + 8$ behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases \textit{quadratically} with input size

For large values of n
- $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches 4

Both are $O(n^2)$ programs
Big-O Notation

- **Represents**
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

![Graph showing # steps vs input size with O(...) and f(n) curves](image-url)
Formal Definition of Big-O

Function $f(n)$ is $O(g(n))$ if

- For some positive constants M, N_0
- $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

5n + 1000 ⇒ O(n)

Select M = 6, N₀ = 1000

For n ≥ 1000

6n ≥ 5n + 1000 is always true

Example ⇒ for n = 1000

6000 ≥ 5000 + 1000
Big-O Examples

$2n^2 + 10n + 1000 \Rightarrow O(n^2)$

- Select $M = 4$, $N_0 = 100$
- For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
- Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

- **Big O categories**
 - $O(\log(n))$
 - $O(n)$
 - $O(n^2)$

- **For large values of n**
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$

- Asymptotic complexity is fundamental measure of efficiency
Comparison of Complexity

A Comparison of Orders

\[f(x) \]

- \(n \)
- \(\frac{1}{2} n^2 \)
- \(n^3 \)
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>3</td>
<td>3^2</td>
</tr>
<tr>
<td>4</td>
<td>$4 \log(n)$</td>
</tr>
<tr>
<td>5</td>
<td>5^n</td>
</tr>
<tr>
<td>6</td>
<td>6^2</td>
</tr>
<tr>
<td>7</td>
<td>$7 \log(n)$</td>
</tr>
<tr>
<td>8</td>
<td>8^n</td>
</tr>
</tbody>
</table>

- 2^n increases exponentially with problem size.
- n^2 increases quadratically with problem size.
- $n \log(n)$ increases linearly with problem size.
- n increases linearly with problem size.
- $\log(n)$ increases logarithmically with problem size.
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>3</td>
<td>n^2</td>
</tr>
<tr>
<td>4</td>
<td>$n \log(n)$</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>$\log(n)$</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing the growth of solution steps with problem size for different complexity categories.
Calculating Asymptotic Complexity

As \(n \) increases

- Highest complexity term dominates
- Can ignore lower complexity terms

Examples

- \(2n + 100 \) \(\Rightarrow \) O(n)
- \(n \log(n) + 10n \) \(\Rightarrow \) O(n\log(n))
- \(\frac{1}{2}n^2 + 100n \) \(\Rightarrow \) O(n^2)
- \(n^3 + 100n^2 \) \(\Rightarrow \) O(n^3)
- \(1/100 \ 2^n + 100n^4 \) \(\Rightarrow \) O(2^n)
Complexity Examples

2n + 100 ⇒ O(n)
Complexity Examples

$\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n\log(n))$
Complexity Examples

\[\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2) \]
Complexity Examples

\[\frac{1}{100} 2^n + 100 n^4 \Rightarrow O(2^n) \]
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

Types of analysis

- Best case
- Worst case
- Average case
- Amortized
Types of Case Analysis

- Best case
 - Smallest number of steps required
 - Not very useful
 - Example ⇒ Find item in first place checked
Types of Case Analysis

Worst case

- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example ⇒ Find item in last place checked
Quicksort Example

Quicksort

- One of the fastest comparison sorts
- Frequently used in practice

Quicksort algorithm

- Pick pivot value from list
- Partition list into values smaller & bigger than pivot
- Recursively sort both lists
Quicksort Example

Quicksort properties

- Average case = $O(n \log(n))$
- Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list

Can avoid worst-case behavior

- Select random pivot value
Types of Case Analysis

Average case

- Number of steps required for “typical” case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
Approaches to Average Case

- **Average case**
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- **Expected case**
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Average Case Example

Example problem

Average # of comparisons needed to find a number in the (sorted) array \(A[] = \{1, 4, 8, 12, 15\} \) using

- **Linear search**
 - Start from beginning, compare elements one at a time

- **Binary search**
 - Start from middle of array at index \(k \), compare element
 - If not element, repeat for top or bottom half of remaining array depending on whether element is smaller or greater than \(A[k] \)
Average Case : Linear Search

Algorithm

Find # of comparisons needed for each case

1 → 1 comparison (1)
4 → 2 comparisons (1, 4)
8 → 3 comparisons (1, 4, 8)
12 → 4 comparisons (1, 4, 8, 12)
15 → 5 comparisons (1, 4, 8, 12, 15)

Calc average = total # of comparisons / # cases

Total # comparisons = 1 + 2 + 3 + 4 + 5 = 15
cases = 5
Average = 3 comparisons / number
Average Case: Binary Search

Algorithm

- Find # of comparisons needed for each case
 - 1 → 3 comparisons (8, 4, 1)
 - 4 → 2 comparisons (8, 4)
 - 8 → 1 comparisons (8)
 - 12 → 2 comparisons (8, 12)
 - 15 → 3 comparisons (8, 12, 15)

- Calc average = total # of comparisons / # cases
 - Total # comparisons = 3 + 2 + 1 + 2 + 3 = 11
 - # cases = 5
 - Average = 2.2 comparisons / number
Average Case Example

Example problem 2

Average # of comparisons needed to find a number in a sorted array $A[n]$ of size n using

- Linear search
- Binary search

For simplicity, we assume elements are stored in $A[1] \ldots A[n]$
Average Case: Linear Search

Algorithm

- **Find # of comparisons needed for each case**
 - ...

- **Calc average = total # of comparisons / # cases**
 - Total # comparisons = 1 + 2 + … + n = ½ n² + 1
 - # cases = n
 - Average ≈ ½ n comparisons / number
Average Case: Binary Search

Algorithm

- Find # of comparisons needed for each case
 - A[n/2] → 1 comp (A[n/2])
 - ...

- Calc average = total # of comparisons / # cases
 - Total # comparisons = n/2 * log2(n) + n/4 * log2(n)–1 + … + 1 = n log2(n)
 - # cases = n
 - Average ≈ log2(n) comparisons / number
Given an array a of integers

- Find the subrange that has the maximum sum
 - e.g., find low, high that maximizes $a[\text{low}] + a[\text{low+1}] + \ldots + a[\text{high}]$
 - only non empty ranges ($\text{low} \leq \text{high}$)
 - If a contained only nonnegative integers, would be $\text{low} = 0$, $\text{high} = a.length - 1$
 - but a can contain negative numbers
 - Can assume that arithmetetic overflow isn't an issue
public static int findBestRange(int[] a) {
 int bestSum = a[0];
 for (int low = 0; low < a.length; low++)
 for (int high = low; high < a.length; high++) {
 int sum = 0;
 for (int i = low; i <= high; i++) sum += a[i];
 if (bestSum < sum)
 bestSum = sum;
 }
 return bestSum;
}

// What is the complexity of the algorithm used here?
Can you find a better algorithm?