CMSC 132: Object-Oriented Programming II

Algorithmic Complexity II

Department of Computer Science
University of Maryland, College Park
Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics

- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources

- Loops
- Recursion
Critical Section Example 1

Code (for input size \(n \))

1. A
2. for (int i = 0; i < n; i++)
3. B \(\rightarrow \) critical section
4. C

Code execution

- A \(\Rightarrow \) once
- B \(\Rightarrow \) n times
- C \(\Rightarrow \) once

Time \(\Rightarrow \) \(1 + n + 1 = O(n) \)
Critical Section Example 2

Code (for input size n)

1. A
2. for (int $i = 0; i < n; i++$)
3. B
4. for (int $j = 0; j < n; j++$)
5. C
6. D

Code execution

- A \Rightarrow once
- B \Rightarrow n times
- C \Rightarrow n^2 times
- D \Rightarrow once

Time $\Rightarrow 1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

Code (for input size n)

1. A
2. for (int $i = 0; i < n; i++$)
3. for (int $j = i+1; j < n; j++$)
4. B

Code execution

- A \Rightarrow once
- B $\Rightarrow \frac{1}{2} n (n-1)$ times

Time $\Rightarrow 1 + \frac{1}{2} n^2 = O(n^2)$
Critical Section Example 4

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. for (int j = 0; j < 10000; j++)
4. B

Code execution

A \Rightarrow once
B \Rightarrow 10000 n times

Time \Rightarrow $1 + 10000n = O(n)$
Critical Section Example 5

Code (for input size n)

1. `for (int i = 0; i < n; i++)`
2. `for (int j = 0; j < n; j++)`
3. `A`
4. `for (int i = 0; i < n; i++)`
5. `for (int j = 0; j < n; j++)`
6. `B`

Code execution

- `A \Rightarrow n^2` times
- `B \Rightarrow n^2` times

Time \(\Rightarrow n^2 + n^2 = O(n^2) \)
Critical Section Example 6

Code (for input size n)

1. i = 1
2. while (i < n) {
3. A
4. i = 2 \times i
5. }
6. B

Code execution

A \Rightarrow \log(n) \text{ times}
B \Rightarrow 1 \text{ times}

Time \Rightarrow \log(n) + 1 = O(\log(n))
Critical Section Example 7

Code (for input size n)

1. DoWork (int n)
2. if ($n == 1$)
3. A
4. else
5. DoWork($n/2$)
6. DoWork($n/2$)

Code execution

- A \Rightarrow 1 times
- DoWork($n/2$) \Rightarrow 2 times

Time(1) \Rightarrow 1

Time(n) = $2 \times$ Time($n/2$) + 1
Recursive Algorithms

Definition

- An algorithm that calls itself

Components of a recursive algorithm

1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size n)

1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

base case
recursive cases
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>$O(n^n)$</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest for size n, constant $k > 1$
Comparing Complexity

- Compare two algorithms
 - \(f(n) \), \(g(n) \)
- Determine which increases at faster rate
 - As problem size \(n \) increases
- Can compare ratio
 - If \(\infty \), \(f() \) is larger
 - If \(0 \), \(g() \) is larger
 - If constant, then same complexity

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)}
\]
Complexity Comparison Examples

- **log(n) vs. n^{1/2}**

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} \rightarrow \lim_{n \to \infty} \frac{\log(n)}{n^{1/2}} \rightarrow 0
 \]

- **1.001^n vs. n^{1000}**

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} \rightarrow \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \rightarrow ??
 \]

 Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - Big-O \(\Rightarrow O(...) \)
 - Represents upper bound on # steps

- **Lower bound**
 - Big-Omega \(\Rightarrow \Omega(...) \)
 - Represents lower bound on # steps

- **Combined bound**
 - Big-Theta \(\Rightarrow \Theta(...) \)
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

Problem
- \(C = A \times B \)

Lower bound
- \(\Omega(n^2) \)
 Required to examine 2D matrix

Upper bounds
- \(O(n^3) \)
 Basic algorithm
- \(O(n^{2.807}) \)
 Strassen’s algorithm (1969)
- \(O(n^{2.376}) \)
 Coppersmith & Winograd (1987)

Improvements still possible (open problem)
- Since upper & lower bounds do not match
Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Deterministic polynomial time</td>
</tr>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

If a problem has an algorithm that solves it in time X, then the problem is said to be in X

- e.g., matrix multiplication is in P
Why do we care?

- If a problem can’t be solved with in P time, then no algorithm can solve all cases exactly in a reasonable amount of time.
 - But there might be an algorithm that always quickly gives close approximations.
 - Or an algorithm that gives quick exact answers for the cases we care about.

- Issues such as PSPACE vs. EXPSPACE are interesting theoretical issues, and sometime provide practice insight.
NP Time Algorithms

Two ways of thinking about it

First way:
- Given a problem, and a potential answer, can we verify that the answer is correct in polynomial time?

Second way:
- Whenever the algorithm wants, it can clone itself in two
- If either clone finds an answer, the entire system produces an answer
Graph 3-coloring

- Given a graph (vertices and undirected edges)
- Can you find a way to color each vertex either blue, red, or green
- Such that no two vertices connected by an edge have the same color?
Some graphs are hard
3 coloring a graph is in NP

- There exist NP algorithms to 3 color a graph
 - Guess a 3 coloring
 - Verify that the coloring is valid
 - Easy to do in $O(n)$ time

- No one knows if there exists a polynomial time algorithm to find a 3 coloring for an arbitrary graph
 - If you come up with one, even one that runs in time $O(n^{100})$, you win one million dollars
 - Seriously
NP Time Algorithm

Many interesting problems are solvable with an NP algorithm, but not known to be solvable with a P algorithm:

- Boolean satisfiability
- Traveling salesman problem (TLP)
- Bin packing

Key to solving many optimization problems:

- Most efficient trip routes
- Most efficient schedule for employees
- Most efficient usage of resources
NP Complete problems

Some problems are NP-complete

- They are in NP
- And if a polynomial time algorithm existed for the program
- Then every single last problem in NP could be solved in polynomial time

Almost all problems that are in NP but are not known to be in P are NP-complete

- But not all
P = NP?

- Are NP problems solvable in polynomial time?
 - Prove $P=NP$
 - Show polynomial time solution exists for any NP-complete problem
 - Prove $P\neq NP$
 - Show no polynomial-time solution possible for some problem in NP
 - The expected answer

- The most important open problem in CS
 - 1 million prize offered by Clay Math Institute
 - Plus front page, NY Times, job offers galore, instant Ph.D. in Computer Science
Algorithmic Complexity Summary

- **Asymptotic complexity**
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform

- **Learned how to**
 - Examine program
 - Find critical sections
 - Calculate complexity of algorithm
 - Compare complexity