CMSC 132: Object-Oriented Programming II

Graph Implementations & Single Source Shortest Path Algorithm

Department of Computer Science
University of Maryland, College Park
Graph Implementation

How do we represent edges?

- **Adjacency matrix**
 - 2D array of neighbors

- **Adjacency list**
 - List of neighbors

- **Adjacency set / map**
 - Set / map of neighbors

Important for very large graphs

- Affects efficiency / storage
Adjacency Matrix

Representation
- 2D array
- Position $j, k \Rightarrow$ edge between nodes n_j, n_k

Example
Adjacency Matrix

Representation (cont.)
- Single array for entire graph
- Undirected graph
 - Only upper / lower triangle matrix needed
 - Since \(n_j, n_k \) implies \(n_k, n_j \)
- Unweighted graph
 - Matrix elements \(\Rightarrow \) boolean
- Weighted graph
 - Matrix elements \(\Rightarrow \) weight
Adjacency List/Set

Representation

- For each node, store
 - List/Set of neighbors / successors
 - Linked list
 - Array list
 - For weighted graph
 - Also store weight for each edge
 - Using a Map is a good choice
 - For undirected graph with edge (a↔b)
 - Nodes a & b need to store each other as neighbor
 - For directed graph with edge (a→b)
 - Node a needs to store node b as neighbor
Adjacency List

Example

Unweighted graph

node 1: {2, 3}
node 2: {1, 3, 4}
node 3: {1, 2, 4, 5}
node 4: {2, 3, 5}
node 5: {3, 4, 5}

Weighted graph

node 1: {2=3.7, 3=5}
node 2: {1=3.7, 3=1, 4=10.2}
node 3: {1=5, 2=1, 4=8, 5=3}
node 4: {2=10.2, 3=8, 5=1.5}
node 5: {3=3, 4=1.5, 5=6}
Adjacency Set / Map

Representation

- For each node, store
 - Set or map of neighbors / successors
- For unweighted graph
 - Use set of neighbors
- For weighted graph
 - Use map of neighbors, w/ value = weight of edge
- For undirected graph with edge (a↔b)
 - Nodes a & b need to store each other as neighbor
- For directed graph with edge (a→b)
 - Node a needs to store node b as neighbor
Graph Space Requirements

- **Adjacency matrix**
 - $\frac{1}{2} N^2$ entries (for graph with N nodes, E edges)
 - Many empty entries for large, sparse graphs

- **Adjacency list**
 - $2 \times E$ entries

- **Adjacency set / map**
 - $2 \times E$ entries
 - Space overhead per entry
 - Higher than for adjacency list
Graph Time Requirements

- **Adjacency matrix**
 - Can find individual edge (a,b) quickly
 - Examine entry in array Edge[a,b]
 - Constant time operation

- **Adjacency list / set / map**
 - Can find all edges for node (a) quickly
 - Iterate through collection of edges for a
 - On average E / N edges per node
Graph Time Requirements

Average Complexity of operations

For graph with N nodes, E edges

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adj Matrix</th>
<th>Adj List</th>
<th>Adj Set/Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find edge</td>
<td>O(1)</td>
<td>O(E/N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Insert edge</td>
<td>O(1)</td>
<td>O(E/N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Delete edge</td>
<td>O(1)</td>
<td>O(E/N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Enumerate edges for node</td>
<td>O(N)</td>
<td>O(E/N)</td>
<td>O(E/N)</td>
</tr>
</tbody>
</table>
Choosing Graph Implementations

- **Graph density**
 - Ratio edges to nodes (dense vs. sparse)

- **Graph algorithm**
 - **Neighbor based**
 - For each node X in graph
 - For each neighbor Y of X // adj list faster if sparse
 - doWork()
 - **Connection based**
 - For each node X in ...
 - For each node Y in ...
 - if (X,Y) is an edge // adj matrix faster if dense
 - doWork()
Single Source Shortest Path

Common graph problem
1. Find path from X to Y with lowest edge weight
2. Find path from X to any Y with lowest edge weight

Useful for many applications
- Shortest route in map
- Lowest cost trip
- Most efficient internet route

Dijkstra’s algorithm solves problem 2
- Can also be used to solve problem 1
- Would use different algorithm if only interested in a single destination
Shortest Path – Dijkstra’s Algorithm

Maintain
- Nodes with known shortest path from start ⇒ S
- Cost of shortest path to node K from start ⇒ C[K]
 - Only for paths through nodes in S
- Predecessor to K on shortest path ⇒ P[K]
 - Updated whenever new (lower) C[K] discovered
 - Remembers actual path with lowest cost
Shortest Path – Intuition for Dijkstra’s

- At each step in the algorithm
 - Shortest paths are known for nodes in S
 - Store in $C[K]$ length of shortest path to node K (for all paths through nodes in $\{S\}$)
 - Add to $\{S\}$ next closest node
Shortest Path – Intuition for Djikstra’s

Update distance to J after adding node K

- Previous shortest path to K already in C[K]
- Possibly shorter path to J by going through node K
- Compare C[J] with C[K] + weight of (K,J), update C[J] if needed
Shortest Path – Dijkstra’s Algorithm

\[S = \emptyset \]
\[P[] = \text{none for all nodes} \]
\[C[\text{start}] = 0, \ C[] = \infty \text{ for all other nodes} \]

while (not all nodes in S)

\[\text{find node } K \text{ not in } S \text{ with smallest } C[K] \]
\[\text{add } K \text{ to } S \]

for each node J not in S adjacent to K

\[\text{if } (C[K] + \text{cost of } (K,J) < C[J]) \]
\[C[J] = C[K] + \text{cost of } (K,J) \]
\[P[J] = K \]

Optimal solution computed with greedy algorithm
Dijkstra’s Shortest Path Example

- **Initial state**

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

Find shortest paths starting from node 1

\(S = 1 \)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 1 not in $\{ S \}$
- $S = \{ 1 \}$

Table:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

Equations:

$C[2] = \min(\infty, C[1] + (1,2)) = \min(\infty, 0 + 5) = 5$

$C[3] = \min(\infty, C[1] + (1,3)) = \min(\infty, 0 + 8) = 8$
Djikstra’s Shortest Path Example

1. Find node K with smallest C[K] and add to S
2. S = { 1, 2 }

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

- Node 1 is added to S
- Node 2 is added to S
- Node 3 is added to S
- Node 4 is added to S
- Node 5 is added to S
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 2 not in S
- $S = \{ 1, 2 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[3] = \min (8, C[2] + (2,3)) = \min (8, 5 + 1) = 6$

$C[4] = \min (\infty, C[2] + (2,4)) = \min (\infty, 5 + 10) = 15$
Dijkstra’s Shortest Path Example

- Find node K with smallest C[K] and add to S
- S = \{ 1, 2, 3 \}

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>\infty</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 3 not in S
- $\{ S \} = 1, 2, 3$

\[
C[4] = \min (15 , C[3] + (3,4)) = \min (15 , 6 + 3) = 9
\]
Dijkstra’s Shortest Path Example

- Find node K with smallest C[K] and add to S
- \{ S \} = 1, 2, 3, 4

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 4 not in S
- $S = \{ 1, 2, 3, 4 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

$C[5] = \min (\infty, C[4] + (4,5)) = \min (\infty, 9 + 9) = 18$
Dijkstra’s Shortest Path Example

Find node K with smallest C[K] and add to S

S = { 1, 2, 3, 4, 5 }

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- All nodes in S, algorithm is finished
- $S = \{ 1, 2, 3, 4, 5 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Find shortest path from start to K
 - Start at K
 - Trace back predecessors in P[

- Example paths (in reverse)
 - 2 → 1
 - 3 → 2 → 1
 - 4 → 3 → 2 → 1
 - 5 → 4 → 3 → 2 → 1

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>