CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need $N-1$ edges for N nodes
 - no cycles, can be thought of as a tree
- Can build tree during traversal

(a) Graph G

(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

Known = { start }
explore (start);

void explore (Node X) {
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Known
 explore(Y)
}

Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

- Many spanning trees possible
 - Different breadth-first traversals
 - Nodes same distance visited in different order
 - Different depth-first traversals
 - Neighbors of node visited in different order
 - Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

Possible to have multiple MSTs
- Different spanning trees with same weight

Example applications
- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. **Borůvka’s algorithm** [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. **Prim’s algorithm** [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. **Kruskal’s algorithm** [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

\[S = \emptyset \]
\[P[] = \text{none for all nodes} \]
\[C[\text{start}] = 0, C[] = \infty \text{ for all other nodes} \]

while (not all nodes in \(S \))

\[\text{find node } K \text{ not in } S \text{ with smallest } C[K] \]
\[\text{add } K \text{ to } S \]
\[\text{for each node } J \text{ not in } S \text{ adjacent to } K \]

\[\text{if (} C[K] + \text{cost of (K,J)} < C[J] \text{)} \]
\[C[J] = C[K] + \text{cost of (K,J)} \]
\[P[J] = K \]

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes
while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
 P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

tree = ∅

for each edge (X,Y) in order

 if it does not create a cycle
 add (X,Y) to tree
 stop when tree has N–1 edges

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

- When does adding \((X,Y)\) to tree create cycle?

- Two approaches to finding cycles
 1. Traversal
 2. Connected subgraph
MST – Kruskal’s Algorithm

Traversing approach
- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example
- Question
 - Add (X,Y) to MST?
- Answer
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

Connected subgraph approach
- Maintain set of nodes for each connected subgraph
- Initialize one connected subgraph for each node
- If X, Y in same set, adding (X,Y) would create cycle
- Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

To test set membership
- Use Union-Find algorithm
MST – Connected Subgraph Example

- **Original graph**

 - A → B: 5
 - A → C: 9
 - B → C: 13
 - C → D: 15
 - B → D: 17

- **MST**

 1. A → B
 2. A → B

- **Sets**

 - {A} {B} {C} {D}

- **Ordered set of edges**

 - <A, B> 5
 - <A, C> 9
 - <B, C> 13
 - <C, D> 15
 - <B, D> 17

- **Edge being considered for addition**

 - <A, B> Include, since it connects two nodes in distinct sets
 - <A, C> Include, since it connects two nodes in distinct sets
MST – Connected Subgraph Example

Original graph

Ordered set of edges

- <A, B> 5
- <A, C> 9
- <B, C> 13
- <C, D> 15
- <B, D> 17

Sets

3. MST

- {A, B, C} {D}
- 5

Edge being considered for addition

- <B, C> Reject, since it connects nodes in the same set and would create a cycle

4.

- {A, B, C} {D}
- 9

- <C, D> Include, since it connects two nodes in distinct sets

Finished
Union-Find Algorithm

Union-Find
- Algorithm & data structure
- Very efficient for testing membership in disjoint sets

Problem description
- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

- Basic approach
 - Each node has a parent pointer
 - Find – follow parent pointer(s) to root of tree
 - Union – point root of 1st tree to root of 2nd tree

- Example
 - Union(a, b); union(c, d); union(b, d)

```
 a  b  c  d
 a  c  d  
 b
 a  c
 b  d
 a  b  c
 d
```
Union-Find Algorithm

Path compression

- **Speeds up future Find() operations**
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example

- **Find(d)**

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x, y) {
    if (x == 0)
        return y + 1;
    if (y == 0)
        return A(x - 1, 1);
    return A(x - 1, A(x, y - 1));
}
```

A() grows fast

- $A(2, 2) = 7$
- $A(3, 3) = 61$
- $A(4, 2) = 2^{65536} - 3$
- $A(4, 3) = 2^{2^{65536}} - 3$
- $A(4, 4) = 2^{2^{2^{65536}}} - 3$
Inverse Ackermann’s Function

Definition

\(\alpha(n) \) is the inverse Ackermann’s function

\[\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n \]

Fun fact

\(\alpha(\text{number of atoms in universe}) = 4 \)

Union-find

A sequence of \(n \) operations requires \(O(n \alpha(n)) \) time

Practically speaking, indistinguishable from \(O(n) \)
Graph Summary

- Graph data structure
 - Very useful in practice
 - Different representations

- Many graph algorithms
 - Traversal
 - Shortest path
 - Minimum spanning tree