CMSC 132: Object-Oriented Programming II

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph Definitions

Node
- Element of graph
- State
 - List of adjacent nodes

Edge
- Connection between two nodes
- State
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges
- Undirected graph
 - Undirected edges
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge
Graph Definitions

Path

- Sequence of nodes n_1, n_2, \ldots, n_k
- Edge exists between each pair of nodes n_i, n_{i+1}

Example

- A, B, C is a path
- A, E, D is not a path
Graph Definitions

- **Cycle**
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A

- **Simple path**
 - No cycles in path

- **Acyclic graph**
 - No cycles in graph
Graph Definitions

- **Reachable**
 - Path exists between nodes

- **Connected graph**
 - Every node is reachable from some node in graph

Unconnected graphs
Graph Operations

Traversal (search)

- Visit each node in graph exactly once
- Usually perform computation at each node
- Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Breadth-first Search (BFS)

Approach

- Visit all neighbors of node first
- View as series of expanding circles
- Keep list of nodes to visit in queue

Example traversal

1. n
2. a, c, b
3. e, g, h, i, j
4. d, f
Breadth-first Tree Traversal

Example traversals starting from 1

Left to right: 1, 2, 3, 4, 5, 6, 7
Right to left: 1, 3, 2, 6, 5, 4, 7
Random: 1, 3, 2, 6, 5, 4, 7
Traversals Orders

Order of successors

For tree
- Can order children nodes from left to right

For graph
- Left to right doesn’t make much sense
- Each node just has a set of successors and predecessors; there is no order among edges

For breadth first search
- Visit all nodes at distance k from starting point
- Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

Approach
- Visit all nodes on path first
- **Backtrack** when path ends
- Keep list of nodes to visit in a stack

Example traversal
1. N
2. A
3. B, C, D, ...
4. F...
Depth-first Tree Traversal

Example traversals from 1 (preorder)

Left to right

Right to left

Random
Traversals Algorithms

Issue
- How to avoid revisiting nodes
- Infinite loop if cycles present

Approaches
- Record set of visited nodes
- Mark nodes as visited
Traversal – Avoid Revisiting Nodes

Record set of visited nodes

- Initialize \{ Visited \} to empty set
- Add to \{ Visited \} as nodes is visited
- Skip nodes already in \{ Visited \}

\[
\begin{align*}
V &= \emptyset \\
V &= \{ 1 \} \\
V &= \{ 1, 2 \}
\end{align*}
\]
Traversing – Avoid Revisiting Nodes

- Mark nodes as visited
 - Initialize tag on all nodes (to False)
 - Set tag (to True) as node is visited
 - Skip nodes with tag = True

Diagram:

1. Initial state:
 - All nodes have tag = False

2. First visit:
 - Set first node to tag = True
 - Skip nodes with tag = True

3. Second visit:
 - Set second node to tag = True
 - Skip nodes with tag = True

4. Third visit:
 - Set third node to tag = True
 - Skip nodes with tag = True

5. Fourth visit:
 - Set fourth node to tag = True
 - Skip nodes with tag = True

6. Fifth visit:
 - Set fifth node to tag = True
 - Skip nodes with tag = True

7. Sixth visit:
 - Set sixth node to tag = True
 - Skip nodes with tag = True

8. Seventh visit:
 - Set seventh node to tag = True
 - Skip nodes with tag = True

9. Eighth visit:
 - Set eighth node to tag = True
 - Skip nodes with tag = True

10. Ninth visit:
 - Set ninth node to tag = True
 - Skip nodes with tag = True

11. Tenth visit:
 - Set tenth node to tag = True
 - Skip nodes with tag = True

12. Eleventh visit:
 - Set eleventh node to tag = True
 - Skip nodes with tag = True

13. Twelfth visit:
 - Set twelfth node to tag = True
 - Skip nodes with tag = True
Traversals Algorithm Using Sets

\{ \text{Visited} \} = \emptyset

\{ \text{Discovered} \} = \{ \text{1st node} \}

\text{while} (\{ \text{Discovered} \} \neq \emptyset)

\quad \text{take node X out of} \{ \text{Discovered} \}

\quad \text{if X not in} \{ \text{Visited} \}

\quad \quad \text{add X to} \{ \text{Visited} \}

\quad \text{for each successor Y of X}

\quad \quad \text{if (Y is not in } \{ \text{Visited} \} \) }

\quad \quad \quad \text{add Y to } \{ \text{Discovered} \}
Traversal Algorithm Using Tags

for all nodes X
 set X.tag = False
{ Discovered } = { 1st node }
while ({ Discovered } \neq \emptyset)
 take node X out of { Discovered }
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of \{ Discovered \} key
- Implement \{ Discovered \} as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement \{ Discovered \} as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X

\[X\text{.tag} = \text{False} \]

put 1\textit{st} node in Queue

while (Queue not empty)

\[\text{take node X out of Queue} \]

if (X.tag = False)

\[\text{set X.tag = True} \]

for each successor Y of X

\[\text{if (Y.tag = False)} \]

\[\text{put Y in Queue} \]
DFS Traversal Algorithm

for all nodes X

\[X.tag = False \]

put 1st node in Stack

while (Stack not empty)

pop X off Stack

if (X.tag = False)

set X.tag = True

for each successor Y of X

if (Y.tag = False)

push Y onto Stack
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

Approach

Visit (X)
 for each successor Y of X
 Visit (Y)

Implicit call stack & backtracking
- Results in depth-first traversal
Recursive DFS Algorithm

 Traverse()
 for all nodes X
 set X.tag = False
 Visit (1st node)

 Visit (X)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 Visit (Y)