Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

Code (for input size \(n \))

1. A
2. for (int i = 0; i < n; i++)
3. B
4. C

Code execution

- A ⇒ once
- B ⇒ \(n \) times
- C ⇒ once

Time ⇒ \(1 + n + 1 = O(n) \)
Critical Section Example 2

Code (for input size \(n \))

1. A
2. for (int i = 0; i < n; i++)
3. B
4. for (int j = 0; j < n; j++)
5. C
6. D

Code execution

- A \(\Rightarrow \) once
- B \(\Rightarrow \) \(n \) times
- C \(\Rightarrow \) \(n^2 \) times
- D \(\Rightarrow \) once

Time \(\Rightarrow 1 + n + n^2 + 1 = O(n^2) \)
Critical Section Example 3

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. for (int j = i+1; j < n; j++)
4. B

Code execution

- A \implies \text{once}
- B \implies \frac{1}{2} n (n-1) \text{ times}

Time \implies 1 + \frac{1}{2} n^2 = \mathcal{O}(n^2)
Critical Section Example 4

Code (for input size \(n \))

1. \(A \)
2. \(\text{for (int } i = 0; i < n; i++) \)
3. \(\text{for (int } j = 0; j < 10000; j++) \)
4. \(B \)

Code execution

- \(A \) ⇒ once
- \(B \) ⇒ 10000 \(n \) times

Time ⇒ \(1 + 10000 \times n = O(n) \)
Critical Section Example 5

Code (for input size \(n \))
1. for (int i = 0; i < n; i++)
2. for (int j = 0; j < n; j++)
3. A
4. for (int i = 0; i < n; i++)
5. for (int j = 0; j < n; j++)
6. B

Code execution
- A \(\Rightarrow n^2 \) times
- B \(\Rightarrow n^2 \) times
- Time \(\Rightarrow n^2 + n^2 = O(n^2) \)
Critical Section Example 6

Code (for input size n)

1. $i = 1$
2. while ($i < n$) {
3. A
4. $i = 2 \times i$
 }
5. B

Code execution

- A $\Rightarrow \log(n)$ times
- B $\Rightarrow 1$ times

Time $\Rightarrow \log(n) + 1 = O(\log(n))$
Critical Section Example 7

Code (for input size n)

1. DoWork (int n)
2. if ($n == 1$)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

Code execution

- A \Rightarrow 1 times
- DoWork(n/2) \Rightarrow 2 times
- Time(1) \Rightarrow 1
- $\text{Time}(n) = 2 \times \text{Time}(n/2) + 1$
Recursive Algorithms

Definition

- An algorithm that calls itself

Components of a recursive algorithm

1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size n)

1. `DoWork (int n)`
2. `if (n == 1)`
3. `A`
4. `else`
5. `DoWork(n/2)`
6. `DoWork(n/2)`

- **Base case**
- **Recursive cases**
Comparing Complexity

- Compare two algorithms
 - \(f(n), g(n) \)
- Determine which increases at faster rate
 - As problem size \(n \) increases
- Can compare ratio
 - If \(\infty \), \(f() \) is larger
 - If \(0 \), \(g() \) is larger
 - If constant, then same complexity

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} \]
Complexity Comparison Examples

- $\log(n)$ vs. $n^{1/2}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{\log(n)}{n^{1/2}} \quad \rightarrow \quad 0$$

- 1.001^n vs. n^{1000}

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \quad \rightarrow \quad ??$$

Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - Big-O $\Rightarrow O(...)$
 - Represents upper bound on # steps

- **Lower bound**
 - Big-Omega $\Rightarrow \Omega(...)$
 - Represents lower bound on # steps

- **Combined bound**
 - Big-Theta $\Rightarrow \Theta(...)$
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

Problem
- $C = A \times B$

Lower bound
- $\Omega(n^2)$
 Required to examine 2D matrix

Upper bounds
- $O(n^3)$
 Basic algorithm
- $O(n^{2.807})$
 Strassen’s algorithm (1969)
- $O(n^{2.376})$
 Coppersmith & Winograd (1987)

Improvements still possible (open problem)
- Since upper & lower bounds do not match
Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Deterministic polynomial time</td>
</tr>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

If a problem has an algorithm that solves it in time X, then the problem is said to be in X

- e.g., matrix multiplication is in P
Why do we care?

- If a problem can’t be solved with in P time, then no algorithm can solve all cases exactly in a reasonable amount of time.
 - But there might be an algorithm that always quickly gives close approximations.
 - Or an algorithm that gives quick exact answers for the cases we care about.

- Issues such as PSPACE vs. EXPSPACE are interesting theoretical issues, and sometime provide practice insight.
Two ways of thinking about it

First way:

Given a problem, and a potential answer, can we verify that the answer is correct in polynomial time?

Second way:

Whenever the algorithm wants, it can clone itself in two

If either clone finds an answer, the entire system produces an answer
Graph 3-coloring

- Given a graph (vertices and undirected edges)
- Can you find a way to color each vertex either blue, red, or green
- Such that no two vertices connected by an edge have the same color?
Some graphs are hard
3 coloring a graph is in NP

There exist NP algorithms to 3 color a graph

- Guess a 3 coloring
- Verify that the coloring is valid
 - Easy to do in $O(n)$ time

No one knows if there exists a polynomial time algorithm to find a 3 coloring for an arbitrary graph

- If you come up with one, even one that runs in time $O(n^{100})$, you win one million dollars
- Seriously
Many interesting problems are solvable with an NP algorithm, but not known to be solvable with a P algorithm

- Boolean satisfiability
- Traveling salesman problem (TLP)
- Bin packing

Key to solving many optimization problems

- Most efficient trip routes
- Most efficient schedule for employees
- Most efficient usage of resources
Some problems are NP-complete

- They are in NP
- And if a polynomial time algorithm existed for the program
- Then every single last problem in NP could be solved in polynomial time

Almost all problems that are in NP but are not known to be in P are NP-complete

- But not all
P = NP?

Are NP problems solvable in polynomial time?

- **Prove P=NP**
 - Show polynomial time solution exists for any NP-complete problem

- **Prove P≠NP**
 - Show no polynomial-time solution possible for some problem in NP
 - The expected answer

The most important open problem in CS

- 1 million prize offered by Clay Math Institute
- Plus front page, NY Times, job offers galore, instant Ph.D. in Computer Science
Algorithmic Complexity Summary

- Asymptotic complexity
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform

- Learned how to
 - Examine program
 - Find critical sections
 - Calculate complexity of algorithm
 - Compare complexity