Trees & Binary Search Trees

Department of Computer Science
University of Maryland, College Park
Trees are hierarchical data structures

- One-to-many relationship between elements

Tree node / element

- Contains data
- Referred to by only 1 (parent) node
- Contains links to any number of (children) nodes
Trees

Terminology

- **Root** ⇒ node with no parent
- **Leaf** ⇒ all nodes with no children
- **Interior** ⇒ all nodes with children
Terminology

- **Sibling** ⇒ node with same parent
- **Descendent** ⇒ children nodes & their descendents
- **Subtree** ⇒ portion of tree that is a tree by itself
 ⇒ a node and its descendents

Trees

![Diagram showing tree structure with examples of siblings and subtree]
Trees

Terminology

- Level \Rightarrow is a measure of a node’s distance from root
- Definition of level
 - If node is the root of the tree, its level is 1
 - Else, the node’s level is $1 +$ its parent’s level

- Height (depth) \Rightarrow max level of any node in tree

Diagram:

Height = 3
Binary Trees

- Binary tree
 - Tree with 0–2 children per node
 - Left & right child / subtree

Binary Tree

Parent
 - Left Child
 - Right Child
Tree Traversal

Often we want to

1. Find all nodes in tree
2. Determine their relationship

Can do this by

1. Walking through the tree in a prescribed order
2. Visiting the nodes as they are encountered

Process is called tree traversal
Tree Traversal

Goal

- Visit every node in binary tree

Approaches

Depth first
- Preorder ⇒ parent before children
- Inorder ⇒ left child, parent, right child
- Postorder ⇒ children before parent

Breadth first ⇒ closer nodes first
Tree Traversal Methods

- **Pre-order**
 1. Visit node // first
 2. Recursively visit left subtree
 3. Recursively visit right subtree

- **In-order**
 1. Recursively visit left subtree
 2. Visit node // second
 3. Recursively right subtree

- **Post-order**
 1. Recursively visit left subtree
 2. Recursively visit right subtree
 3. Visit node // last
Tree Traversal Methods

Breadth-first

BFS(Node n) {
 Queue Q = new Queue();
 Q.enqueue(n); // insert node into Q
 while (!Q.empty()) {
 n = Q.dequeue(); // remove next node
 if (!n.isEmpty()) {
 visit(n); // visit node
 Q.enqueue(n.Left()); // insert left subtree in Q
 Q.enqueue(n.Right()); // insert right subtree in Q
 }
 }
}
Tree Traversal Examples

- **Pre-order (prefix)**
 - $+ \times 2 \ 3 \ / \ 8 \ 4$

- **In-order (infix)**
 - $2 \ \times \ 3 \ + \ 8 \ / \ 4$

- **Post-order (postfix)**
 - $2 \ 3 \ \times \ 8 \ 4 \ / \ +$

- **Breadth-first**
 - $+ \ \times \ / \ 2 \ 3 \ 8 \ 4$

Expression tree
Binary Tree Implementation

Using a class to represent a Node

```java
Class Node {
    KeyType key;
    Node left, right;  // null if empty
}
```

Node root = null; // Empty Tree

Using a Polymorphic Binary Tree

We will talk about this implementation later on
Types of Binary Trees

- Degenerate
 - Mostly 1 child / node
 - Height = O(n)
 - Similar to linear list

- Balanced
 - Mostly 2 child / node
 - Height = O(log(n))
 - \(2^{Height} - 1 = n\) (# of nodes)
 - Useful for searches
Binary Search Trees

Key property

Value at node
- Smaller values in left subtree
- Larger values in right subtree

Example
- $X > Y$
- $X < Z$
Binary Search Trees

Examples

Binary search trees

Non-binary search tree
Tree Traversal Examples

- **Pre-order**
 - 44, 17, 32, 78, 50, 48, 62, 88

- **In-order**
 - 17, 32, 44, 48, 50, 62, 78, 88

- **Post-order**
 - 32, 17, 48, 62, 50, 88, 78, 44

- **Breadth-first**
 - 44, 17, 78, 32, 50, 88, 48, 62

The tree traversal is as follows:

- **Pre-order**: 44, 17, 32, 78, 50, 48, 62, 88
- **In-order**: 17, 32, 44, 48, 50, 62, 78, 88
- **Post-order**: 32, 17, 48, 62, 50, 88, 78, 44
- **Breadth-first**: 44, 17, 78, 32, 50, 88, 48, 62

The tree is a **Binary search tree** and is sorted in order!
Example Binary Searches

Find (2)

1. **Tree 1**
 - 10
 - 5
 - 30
 - 2
 - 25
 - 45
 - **Decision:**
 - 2 < 10, left
 - 2 < 5, left
 - 2 = 2, found

2. **Tree 2**
 - 5
 - 30
 - 2
 - 45
 - **Decision:**
 - 2 < 5, left
 - 2 = 2, found
Example Binary Searches

Find (25)

25 > 10, right
25 < 30, left
25 = 25, found

25 > 5, right
25 < 45, left
25 < 30, left
25 > 10, right
25 = 25, found
Binary Search Properties

Time of search
- Proportional to height of tree
- Balanced binary tree
 - $O(\log(n))$ time
- Degenerate tree
 - $O(n)$ time
 - Like searching linked list / unsorted array

Requires
- Ability to compare key values
Binary Search Tree Construction

How to build & maintain binary trees?

- Insertion
- Deletion

Maintain key property (invariant)

- Smaller values in left subtree
- Larger values in right subtree
Binary Search Tree – Insertion

Algorithm

1. Perform search for value X
2. Search will end at node Y (if X not in tree)
3. If X < Y, insert new leaf X as new left subtree for Y
4. If X > Y, insert new leaf X as new right subtree for Y

Observations

- \(O(\log(n)) \) operation for balanced tree
- Insertions may unbalance tree
Example Insertion

Insert (20)

20 > 10, right
20 < 30, left
20 < 25, left
Insert 20 on left
Binary Search Tree – Deletion

Algorithm

1. Perform search for value X
2. If X is a leaf, delete X
3. Else // must delete internal node
 a) Replace with largest value Y on left subtree
 OR smallest value Z on right subtree
 b) Delete replacement value (Y or Z) from subtree

Observation

- \(O(\log(n)) \) operation for balanced tree
- Deletions may unbalance tree
Example Deletion (Leaf)

Delete (25)

25 > 10, right
25 < 30, left
25 = 25, delete
Delete (10)

Replacing 10 with largest value in left subtree

Replacing 5 with largest value in left subtree

Deleting leaf
Example Deletion (Internal Node)

Delete (10)

Replacing 10 with smallest value in right subtree

Deleting leaf

Resulting tree
Building Maps w/ Search Trees

- Binary Search trees often used to implement maps
 - Each non-empty node contains
 - Key
 - Value
 - Left and right child

- Need to be able to compare keys
 - Generic type <K extends Comparable<K>>
 - Denotes any type K that can be compared to K’s
BST (Binary Search Tree) Implementation

- Implementing Tree using traditional approach
- Based on the BST definition below let’s see how to implement typical BST Operations (constructor, add, print, find, isEmpty, isFull, size, height, etc.)

```java
public class BinarySearchTree <K extends Comparable<K>, V> {
    private class Node {
        private K key;
        private V data;
        private Node left, right;
        public Node(K key, V data) {
            this.key = key;
            this.data = data;
        }
    }
    private Node root;
}
```

- See code distribution BinaryTreeCode.zip
BST Testing

- How can we test the correctness of BST Methods?
- What is the best approach?
Polymorphic Binary Search Trees

- Second approach to implement BST
- What do we mean by polymorphic?
- Implement two subtypes of Tree
 1. EmptyTree
 2. NonEmptyTree
- Use EmptyTree to represent the empty tree
 - Rather than null
- Invoke methods on tree nodes
 - Without checking for null (IMPORTANT!)
Polymorphic Binary Tree Implementation

Interface Tree {
 Tree insert (Value data1) { ... }
}

Class EmptyTree implements Tree {
 Tree insert (Value data1) { ... }
}

Class NonEmptyTree implements Tree {
 Value data;
 Tree left, right; // Either Empty or NonEmpty
 Tree insert (Value data1) { ... }
}
Class Node {
 Node left, right;
}

Node X {
 left = Y;
 right = Z;
}

Node Y {
 left = null;
 right = null;
}

Node Z {
 left = null;
 right = W;
}

Node W {
 left = null;
 right = null;
}

Class EmptyTree {}
Singleton Design Pattern

- **Definition**
 - One instance of a class or value accessible globally

- **Where to use & benefits**
 - Ensure unique instance by defining class final
 - Access to the instance only via methods provided

- EmptyTree class will be a singleton class
public final class MySingleton {
 // declare the unique instance of the class
 private static MySingleton uniq = new MySingleton();
 // private constructor only accessed from this class
 private MySingleton() { … }
 // return reference to unique instance of class
 public static MySingleton getInstance() {
 return uniq;
 }
}
Using Singleton EmptyTree

Class Node {
 Node left, right;
}

Node X {
 left = Y;
 right = Z;
}

Node Y {
 left = null;
 right = null;
}

Node Z {
 left = null;
 right = W;
}

Node W {
 left = null;
 right = null;
}

Class EmptyTree {}

Class NonEmptyTree {
 Tree left, right;
}

NonEmptyTree X {
 left = Y;
 right = Z;
}

NonEmptyTree Y {
 left = ET;
 right = ET;
}

NonEmptyTree Z {
 left = ET;
 right = W;
}

NonEmptyTree W {
 left = ET;
 right = ET;
}

EmptyTree ET {}
Polymorphic List Implementation

Let’s see a polymorphic list implementation

See code distribution PolymorphicListCode.zip