CMSC 132: Object-Oriented Programming II

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph Definitions

- **Node**
 - Element of graph
 - State
 - List of adjacent/neighbor/successor nodes

- **Edge**
 - Connection between two nodes
 - State
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges
- Undirected graph
 - Undirected edges
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge
Graph Definitions

Path

- Sequence of nodes n_1, n_2, \ldots, n_k
- Edge exists between each pair of nodes n_i, n_{i+1}

Example

- A, B, C is a path
- A, E, D is not a path
Graph Definitions

- **Cycle**
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A

- **Simple path**
 - No cycles in path

- **Acyclic graph**
 - No cycles in graph
Graph Definitions

Connected Graph
- Every node in the graph is reachable from every other node in the graph

Unconnected graph
- Graph that has several disjoint components

Unconnected graph
Graph Operations

Traversal (search)

- Visit each node in graph exactly once
- Usually perform computation at each node
- Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Breadth-first Search (BFS)

Approach
- Visit all neighbors of node first
- View as series of expanding circles
- Keep list of nodes to visit in queue

Example traversal
1. n
2. a, c, b
3. e, g, h, i, j
4. d, f
Breadth-first Tree Traversal

Example traversals starting from 1

Left to right

1
2
3
4
5
6
7

Right to left

1
3
2
6
5
4
7

Random

1
2
3
5
6
4
7
Traversals Orders

Order of successors

For tree
- Can order children nodes from left to right

For graph
- Left to right doesn’t make much sense
- Each node just has a set of successors and predecessors; there is no order among edges

For breadth first search
- Visit all nodes at distance k from starting point
- Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

Approach
- Visit all nodes on path first
- Backtrack when path ends
- Keep list of nodes to visit in a stack

Example traversal
1. N
2. A
3. B, C, D, ...
4. F...
Depth-first Tree Traversal

Example traversals from 1 (preorder)

Left to right: 1 2 3 4 5 6 7
Right to left: 1 4 6 5 3 7 2
Random: 1 4 2 7 5 6 3
Traversals Algorithms

Issue
- How to avoid revisiting nodes
- Infinite loop if cycles present

Approaches
- Record set of visited nodes
- Mark nodes as visited
Traversing – Avoid Revisiting Nodes

- Record set of visited nodes
 - Initialize \{ \text{Visited} \} to empty set
 - Add to \{ \text{Visited} \} as nodes is visited
 - Skip nodes already in \{ \text{Visited} \}

\[
V = \emptyset \\
V = \{ 1 \} \\
V = \{ 1, 2 \}
\]
Traversing a graph algorithmically involves marking nodes as visited to avoid revisiting them. Here’s how it works:

- **Mark nodes as visited**
 - Initialize tag on all nodes (to False)
 - Set tag (to True) as node is visited
 - Skip nodes with tag = True

![Diagram showing traversal with nodes marked as visited](image)
Traversing Algorithm Using Sets

\{\text{Visited}\} = \emptyset

\{\text{Discovered}\} = \{1\text{st node}\}

\text{while (}\{\text{Discovered}\} \neq \emptyset\text{)}

\begin{align*}
&\text{take node } X \text{ out of } \{\text{Discovered}\} \\
&\text{if } X \text{ not in } \{\text{Visited}\} \\
&\quad \text{add } X \text{ to } \{\text{Visited}\} \\
&\text{for each successor } Y \text{ of } X \\
&\quad \text{if (} Y \text{ is not in } \{\text{Visited}\} \text{)} \\
&\quad \quad \text{add } Y \text{ to } \{\text{Discovered}\}
\end{align*}
Traversal Algorithm Using Tags

for all nodes X
 set X.tag = False
{ Discovered } = { 1st node }
while ({ Discovered } ≠ ∅)
 take node X out of { Discovered }
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of \{ Discovered \} key
- Implement \{ Discovered \} as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement \{ Discovered \} as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X

 X.tag = False

put 1st node in Queue

while (Queue not empty)

 take node X out of Queue

 if (X.tag = False)
 set X.tag = True

 for each successor Y of X
 if (Y.tag = False)
 put Y in Queue
DFS Traversal Algorithm

for all nodes X

 X.tag = False

put 1st node in Stack

while (Stack not empty)

 pop X off Stack

 if (X.tag = False)

 set X.tag = True

 for each successor Y of X

 if (Y.tag = False)

 push Y onto Stack
Example

Let’s do a BFS/DFS using the following graph (start vertex A)
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

Approach

Visit (X)
 for each successor Y of X
 Visit (Y)

- Implicit call stack & backtracking
 - Results in depth-first traversal
Recursive DFS Algorithm

Traverse()

 for all nodes X
 set X.tag = False
 Visit (1st node)

Visit(X)

 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 Visit (Y)