CMSC330
Finite Automata 2

Last Lecture

• Finite automata
 – Alphabet, states…
 – \((\Sigma, Q, q_0, F, \delta)\)
• Types
 – Deterministic (DFA)
 – Non-deterministic (NFA)
• Reducing RE to NFA
 – Concatenation
 – Union
 – Closure

This Lecture

• Reducing NFA to DFA*
 – \(\epsilon\)-closure
 – Subset algorithm
• Minimizing DFA*
 – Hopcroft reduction
• Complementing DFA
• Implementing DFA*

How NFA Works

• When NFA processes a string
 – NFA may be in several possible states
 • Multiple transitions with same label
 • \(\epsilon\)-transitions
• Example
 – After processing “a”
 • NFA may be in states
 \(S_1, S_2, S_3\)

Reducing NFA to DFA

• NFA may be reduced to DFA
 – By explicitly tracking the set of NFA states
• Intuition
 – Build DFA where
 • Each DFA state represents a set of NFA states
• Example

Reducing NFA to DFA (cont.)

• Reduction applied using the subset algorithm
 – DFA state is a subset of set of all NFA states
• Algorithm
 – Input
 • NFA \((\Sigma, Q, q_0, F, \delta)\)
 – Output
 • DFA \((\Sigma, R, r_0, F, \delta)\)
 – Using
 • \(\epsilon\)-closure(p)
 • move(p, a)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 - \((p, x, p_i) \in \delta \), \((p_i, x, p_{i+1}) \in \delta \), \ldots, \((p_n, x, q) \in \delta \)
- \(\varepsilon \)-closure(\(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \)
 - \(\varepsilon \)-closure(\(p \)) = \(\{ q \mid p \xrightarrow{\varepsilon} q \} \)
 - Note
 - \(\varepsilon \)-closure(\(p \)) always includes \(p \)
 - \(\varepsilon \)-closure() may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{a} S_2 \)
 - \(S_2 \xrightarrow{b} S_3 \)
 - \(S_1 \xrightarrow{} S_3 \)
- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \(\{ S_1, S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_2 \)) = \(\{ S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_3 \)) = \(\{ S_3 \} \)
 - \(\varepsilon \)-closure(\(\{ S_1, S_2 \} \)) = \(\{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \} \)

ε-closure: Example 2

- Following NFA contains
 - \(S_1 \xrightarrow{} S_3 \)
 - \(S_3 \xrightarrow{a} S_2 \)
 - \(S_1 \xrightarrow{b} S_2 \)
- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \(\{ S_1, S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_2 \)) = \(\{ S_2 \} \)
 - \(\varepsilon \)-closure(\(S_3 \)) = \(\{ S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(\{ S_2, S_3 \} \)) = \(\{ S_2 \} \cup \{ S_2, S_3 \} \)

ε-closure: Practice

- Find \(\varepsilon \)-closures for following NFA
 - \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \(\{ S_1, S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_2 \)) = \(\{ S_2 \} \)
 - \(\varepsilon \)-closure(\(S_3 \)) = \(\{ S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(\{ S_2, S_3 \} \)) = \(\{ S_2 \} \cup \{ S_2, S_3 \} \)
 - The regular expression \((0|1)^*111(0^*1) \)

Calculating move(\(p, a \))

- \(\text{move}(p,a) \)
 - Set of states reachable from \(p \) using exactly one transition on \(a \)
 - Set of states \(q \) such that \([p, a, q] \in \delta \)
 - \(\text{move}(p,a) = \{ q \mid [p, a, q] \in \delta \} \)
 - Note \(\text{move}(p,a) \) may be empty \(\emptyset \)
 - If no transition from \(p \) with label \(a \)

move(\(p, a \)) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)
- Move
 - \(\text{move}(S_1, a) = \{ S_2, S_3 \} \)
 - \(\text{move}(S_1, b) = \emptyset \)
 - \(\text{move}(S_2, a) = \emptyset \)
 - \(\text{move}(S_2, b) = \{ S_3 \} \)
 - \(\text{move}(S_3, a) = \emptyset \)
 - \(\text{move}(S_3, b) = \emptyset \)
move(p,a) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - move(S1, a) = { S2 }
 - move(S1, b) = { S3 }
 - move(S2, a) = { S3 }
 - move(S2, b) = \emptyset
 - move(S3, a) = \emptyset
 - move(S3, b) = \emptyset

NFA \rightarrow DFA Reduction Algorithm

- Input NFA ($\Sigma, Q, q_0, F_n, \delta$),
- Output DFA ($\Sigma, R, r_0, F_d, \delta$)

- Algorithm
 - Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state
 - While \exists an unmarked state $r \in R$ // process DFA state r
 - Mark r // each state visited once
 - For each $a \in \Sigma$ // for each letter a
 - Let $S = \{ q \in r \land \text{move}(q, a) = s \}$ // states reached via a
 - Let $\delta = \varepsilon$-closure(S) // states reached via ε
 - If $\delta \notin R$ // if state δ is new
 - Let $r = r \cup \delta$ // add δ to R (unmarked)
 - Let $r = r \cup \{ r, a, \delta \}$ // add transition $r \rightarrow a$
 - Let $F_d = \{ r \mid \exists s \in r \land s \in F_n \}$ // final if include state in F_n

NFA \rightarrow DFA Example 1

- Start = ε-closure(S1) = { [S1,S3] }
- $r \in R = [S1,S3]$
- Move([S1,S3],a) = [S2]
 - $e = \varepsilon$-closure([S2]) = [S2]
 - $R = R \cup [S2] = [S1,S3], [S2]$
 - $\delta = \delta \cup [S1,S3], a, [S2]$
- Move([S1,S3],b) = \emptyset

NFA \rightarrow DFA Example 1 (cont.)

- $R = [S1,S3], [S2]$
- $r \in R = [S2]$
- Move([S2],a) = \emptyset
- Move([S2],b) = [S3]
 - $e = \varepsilon$-closure([S3]) = [S3]
 - $R = R \cup [S3] = [S1,S3], [S2], [S3]$
 - $\delta = \delta \cup [S2], b, [S3]$

NFA \rightarrow DFA Example 2

- NFA
 - DFA
NFA → DFA Example 3

- NFA
- DFA

\[R = \{ [A,B], [B,D], [C,D], [E] \} \]

Equivalence of DFAs and NFAs

- Any string from \([A]\) to either \([D]\) or \([CD]\)
 - Represents a path from \(A\) to \(D\) in the original

Minimizing DFA

- Result from CS DFA
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y\) belong in same partition if and only if for all symbols in \(\Sigma\) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split \([S, T, U, V]\)
 - All transitions on \(a\) lead to identical partition \(P2\)
 - Even though transitions on \(a\) lead to different states
Splitting Partitions (cont.)
- Need to split partition \(\{S, T, U\} \) into \(\{S, T\}, \{U\} \)
 - Transitions on \(a \) from \(S, T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(R \) lead to partition \(P_3 \)

Resplitting Partitions
- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S, T, U\} \)
 - After splitting partition \(\{X, Y\} \) into \(\{X\}, \{Y\} \)
 - Need to split partition \(\{S, T, U\} \) into \(\{S, T\}, \{U\} \)

Minimizing DFA: Example 1
- DFA
 - Initial partitions
 - Accept \(\{R\} \) → \(P_1 \)
 - Reject \(\{S, T\} \) → \(P_2 \)
 - Split partition? → Not required, minimization done
 - move(\(S, a \)) = \(T \) → \(P_2 \)
 - move(\(S, b \)) = \(R \) → \(P_1 \)
 - move(\(T, a \)) = \(T \) → \(P_2 \)
 - move(\(T, b \)) = \(R \) → \(P_1 \)

Minimizing DFA: Example 2
- DFA
 - Initial partitions
 - Accept \(\{R\} \) → \(P_1 \)
 - Reject \(\{S, T\} \) → \(P_2 \)
 - Split partition? → Yes, different partitions for \(B \)
 - move(\(S, a \)) = \(T \) → \(P_2 \)
 - move(\(S, b \)) = \(R \) → \(P_1 \)
 - move(\(T, a \)) = \(T \) → \(P_2 \)
 - move(\(T, b \)) = \(R \) → \(P_1 \)

Complement of DFA
- Given a DFA accepting language \(L \)
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a, b\} \)

Complement of DFA (cont.)
- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

Implementing DFAs

Alternatively, use generic table-driven DFA

given components (Σ, Q, q₀, F, δ) of a DFA:
 let q = q₀,
 while (there exists another symbol s of the input string) do
 q := δ(q, s);
 if q ∈ F then accept
 else reject

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute δ(q, c) in constant time
 - Then time to process s is O(|s|)
 - Can’t get much faster!
- Constructing DFA for RE A may take O(2^|A|) time
 - But usually not the case in practice
- So there’s the initial overhead
 - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of \((\Sigma, Q, q_0, \delta, \delta_0) \), the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity

Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
 - \((0|1)^*1|0^*\)
 - Strings of alternating 0 and 1
 - \(aba^*|(ba|b)\)

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - \(\text{RE} \rightarrow \text{NFA}\)
 - Concatenation, union, closure
 - \(\text{NFA} \rightarrow \text{DFA}\)
 - \(\varepsilon\)-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation

Discussion Tomorrow

- I will be in cville
- Going through \(\text{regexp->NFA->DFA->minimization}\) examples
- Quiz!
 - Your ego at work here…
 - Everything from last week (so no RE theory, no NFA/DFA)