CMSC330

Objects, Functional Programming, and lambda calculus
OOP vs. FP

• Object-oriented programming (OOP)
 – Computation as interactions between objects
 – Objects encapsulate mutable data (state)
 • Accessed / modified via object’s public methods

• Functional programming (FP)
 – Computation as evaluation of functions
 • Mutable data used to improve efficiency
 – Higher-order functions implemented as closures
 • Closure = function + environment
An Integer “Stack” Abstraction in Java

class Stack {
 class Node {
 Integer val; Node next;
 Node(Integer v, Node n) { val = v; next = n; }
 }
 private Node theStack;
 void push(Integer v) {
 theStack = new Node(v, theStack);
 }
 Integer pop() {
 if (theStack == null)
 throw new NoSuchElementException();
 Integer temp = theStack.val;
 theStack = theStack.next;
 return temp;
 }
}
A “Stack” Abstraction in OCaml

```ocaml
module type STACK =
  sig
    type 'a stack
    val new_stack : unit -> 'a stack
    val push : 'a stack -> 'a -> unit
    val pop : 'a stack -> 'a
  end

module Stack : STACK =
  struct
    type 'a stack = 'a list ref
    let new_stack () = ref []
    let push s x = s := (x::!s)
    let pop s = match !s with
        [] -> failwith "Empty stack"
    | (h::t) -> s := t; h
  end
```
Another “Stack” Abstraction in OCaml

```ocaml
let new_stack () =
  let this = ref [] in
  let push x = this := (x::!this) in
  let pop () = match !this with
    [] -> failwith "Empty stack"
    | (h::t) -> this := t; h
  in
  (push, pop)

# let s = new_stack ();;
val s : ('_a -> unit) * (unit -> '_a) = (<fun>, <fun>)

# Pervasives.fst s 3;; (* applies 1st part of s to 3 *)
- : unit = ()

# Pervasives.snd s ();; (* applies 2nd part of s to () *)
- : int = 3
```
Two OCaml Stack Implementations

• 1st implementation (OOP style)
 – Based on modules
 – Specifies methods for
 • Creating stack
 • Pushing value onto stack parameter
 • Popping value from stack parameter

• 2nd implementation (FP style)
 – Based on closures
 – Creating stack returns \textit{tuple} containing
 • Closure for pushing value onto created stack
 • Closure for popping value from created stack
Relating Objects and Closures

• An object...
 – Is a collection of fields (data)
 – ...and methods (code)
 – When a method is invoked
 • Method has implicit \textit{this} parameter that can be used to access fields of object

• A closure...
 – Is a pointer to an environment (data)
 – ...and a function body (code)
 – When a closure is invoked
 • Function has implicit environment that can be used to access variables
class C {
 int x = 0;
 void set_x(int y) { x = y; }
 int get_x() { return x; }
}

let make () =
 let x = ref 0 in
 ((fun y -> x := y),
 (fun () -> !x))

1. C c = new C();
2. c.set_x(3);
3. int y = c.get_x();

let (set, get) = make ();
let y = get ();
Recall a Useful Higher-Order Function

let rec map f = function
 [] -> []
| (h::t) -> (f h)::(map f t)

• Map applies an arbitrary function f
 – To each element of a list
 – And returns the resulting modified list

• Can we encode this in Java?
 – Using object oriented programming
A Map Method for Stack

• Problem – Write a map method in Java
 – Must pass a function into another function

• Solution
 – Can be done using an object with a known method
 – Use interface to specify what method must be present

```java
public interface Function {
    Integer eval(Integer arg);
}
```
A Map Method for Stack (cont.)

• Examples
 – Two classes which both implement Function interface

```java
class AddOne implements Function {
    Integer eval(Integer arg) {
        return new Integer(arg + 1);
    }
}
```

```java
class MultTwo implements Function {
    Integer eval(Integer arg) {
        return new Integer(arg * 2);
    }
}
```
The New Stack Class

class Stack {
 class Node {
 Integer val; Node next;
 Node (Integer v, Node n) { val = v; next = n; }
 Entry map(Function f) {
 if (next == null)
 return new Node(f.eval(val), null);
 else return new Node(f.eval(val), next.map(f));
 }
 }
 Node theStack;
 ...
 Stack map(Function f) {
 Stack s = new Stack();
 s.theStack = theStack.map(f);
 return s;
 }
}
Applying Map To A Stack

• Then to apply the function, we just do

```
Stack s = ...;
Stack t = s.map(new AddOne());
Stack u = s.map(new MultTwo());
```

– We make a new object
 • That has a method that performs the function we want
– This is sometimes called a callback
 • Because map “calls back” to the object passed into it
– But it’s really just a higher-order function
 • Written more awkwardly
Relating Closures and Objects

let app f x = f x

a = 3

fun b -> a + b

let add a b = a + b;;
let f = add 3;;
app f 4;;

interface F {
 Integer eval(Integer y);
}
class C {
 static Integer app(F f, Integer x) {
 return f.eval(x);
 }
}

class G implements F {
 Integer a;
 G(Integer a) { this.a = a; }
 Integer eval(Integer y) {
 return new Integer(a + y);
 }
}

F adder = new G(3);
C.app(adder, 4);
Code as Data

• Closures and objects are related
 – Both of them allow
 • Data to be associated with higher-order code
 • Pass code around the program

• The key insight in all of these examples
 – Treat code as if it were data
 • Allowing code to be passed around the program
 • And invoked where it is needed (as callback)

• Approach depends on programming language
 – Higher-order functions (OCaml, Ruby, Lisp)
 – Function pointers (C, C++)
 – Objects with known methods (Java)
Code as Data (cont.)

• This is a powerful programming technique
 – Solves a number of problems quite elegantly
 • Create new control structures (e.g., Ruby iterators)
 • Add operations to data structures (e.g., visitor pattern)
 • Event-driven programming (e.g., observer pattern)
 – Keeps code separate
 • Clean division between higher & lower-level code
 – Promotes code reuse
 • Lower-level code supports different callbacks
Lambda Calculus
Programming Language Features

• Many features exist simply for convenience
 – Multi-argument functions \texttt{foo (a, b, c)}
 • Use currying or tuples
 – Loops \texttt{while (a < b) …}
 • Use recursion
 – Side effects \texttt{a := 1}
 • Use functional programming

• So what language features are really needed?
Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton
Programming Language Theory

• Come up with a “core” language
 – That’s as small as possible
 – But still Turing complete

• Helps illustrate important
 – Language features
 – Algorithms

• One solution
 – Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 - Stephen Cole Kleene

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…
Lambda Expressions

• A lambda calculus expression is defined as

\[
e ::= x \quad \text{variable} \\
| \ \lambda x.e \quad \text{function} \\
| e \ e \quad \text{function application}
\]

• \(\lambda x.e \) is like \((\text{fun } x \to e)\) in OCaml

• That’s it! Nothing but higher-order functions
Three Conveniences

• Syntactic sugar for local declarations
 – let x = e1 in e2 is short for (λx.e2) e1

• Scope of λ extends as far right as possible
 – Subject to scope delimited by parentheses
 – λx. λy.x y is same as λx.(λy.(x y))

• Function application is left-associative
 – x y z is (x y) z
 – Same rule as OCaml
Lambda Calculus Semantics

• All we’ve got are functions
 – So all we can do is call them
• To evaluate \((\lambda x. e_1) \, e_2\)
 – Evaluate \(e_1\) with \(x\) bound to \(e_2\)
• This application is called
 beta-reduction
 – \((\lambda x. e_1) \, e_2 \rightarrow e_1[x/e_2]\)
 • \(e_1[x/e_2]\) is \(e_1\) where occurrences of \(x\) are replaced by \(e_2\)
 – We allow reductions to occur anywhere in a term
Beta Reduction Example

• \((\lambda x.\lambda z.x\ z)\ y\)
 \(\rightarrow (\lambda x.(\lambda z.(x\ z)))\ y\) // since \(\lambda\) extends to right

• \((\lambda x.(\lambda z.(x\ z)))\ y\) // apply \((\lambda x.e1)\ e2 \rightarrow e1[x/e2]\)
 \(\rightarrow (\lambda z.(x\ z)))\ y\) // where \(e1 = \lambda z.(x\ z), e2 = y\)

• \(\lambda z.(y\ z)\) // final result

• Equivalent OCaml code
 – \((\text{fun } x \to (\text{fun } z \to (x\ z)))\ y\) \(\rightarrow\) \(\text{fun } z \to (y\ z)\)
Lambda Calculus Examples

- $(\lambda x. x) \ z \rightarrow z$
- $(\lambda x. y) \ z \rightarrow y$
- $(\lambda x. x \ y) \ z \rightarrow z \ y$

- A function that applies its argument to y
Lambda Calculus Examples (cont.)

- \((\lambda x.x \ y) \ (\lambda z. z) \rightarrow (\lambda z. z) \ y \rightarrow y\)

- \((\lambda x. \lambda y. x \ y) \ z \rightarrow \lambda y. z \ y\)
 - A curried function of two arguments
 - Applies its first argument to its second

- \((\lambda x. \lambda y. x \ y) \ (\lambda z. z) \ x \rightarrow \lambda y. ((\lambda z. z) y) \ x \rightarrow (\lambda z. z) \ x \rightarrow xx\)
Static Scoping & Alpha Conversion

• Lambda calculus uses static scoping

• Consider the following
 – \((\lambda x. x \ (\lambda x. x)) \ z \rightarrow ?\)
 • The rightmost “\(x\)” refers to the second binding
 – This is a function that
 • Takes its argument and applies it to the identity function

• This function is “the same” as \((\lambda x. x \ (\lambda y. y))\)
 – Renaming bound variables consistently is allowed
 • This is called alpha-renaming or alpha conversion
 – Ex. \(\lambda x. x = \lambda y. y = \lambda z. z\) \quad \lambda y. \lambda x. y = \lambda z. \lambda x. z\)
Static Scoping (cont.)

• How about the following?
 – \((\lambda x.\lambda y.x \ y) \ y \rightarrow ?\)
 – When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\)
 – I.e., \((\lambda x.\lambda y.x \ y) \ y \neq \lambda y.y \ y\)

• Solution
 – \((\lambda x.\lambda y.x \ y)\) is “the same” as \((\lambda x.\lambda z.x \ z)\)
 • Due to alpha conversion
 – So change \((\lambda x.\lambda y.x \ y) \ y\) to \((\lambda x.\lambda z.x \ z) \ y\) first
 • Now \((\lambda x.\lambda z.x \ z) \ y \rightarrow \lambda z.y \ z\)
Beta-Reduction, Again

- Whenever we do a step of beta reduction
 - \((\lambda x. e_1) \ e_2 \rightarrow e_1[x/e_2]\)
 - We must first alpha-convert variables as necessary
 - Usually performed implicitly (w/o showing conversion)

- Examples
 - \((\lambda x. \lambda y. x \ y) \ y = (\lambda x. \lambda z. x \ z) \ y \rightarrow \lambda z. y \ z\)
 \ // y
 \rightarrow z
 - \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda y. y \ (\lambda x. x)) \ z \rightarrow z \ (\lambda y. y)\)
 \ // x \rightarrow y
 - \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda x. x \ (\lambda y. y)) \ z \rightarrow z \ (\lambda y. y)\)
 \ // x \rightarrow y
Encodings

• The lambda calculus is Turing complete

• Means we can encode any computation we want
 – If we’re sufficiently clever...

• Examples
 – Booleans
 – Pairs
 – Natural numbers & arithmetic
 – Looping
Booleans

- Church’s encoding of mathematical logic
 - true = \(\lambda x.\lambda y.x \)
 - false = \(\lambda x.\lambda y.y \)
 - if a then b else c

- Examples
 - if true then b else c \(\rightarrow (\lambda x.\lambda y.x) \ b \ c \rightarrow (\lambda y.b) \ c \rightarrow b \)
 - if false then b else c \(\rightarrow (\lambda x.\lambda y.y) \ b \ c \rightarrow (\lambda y.y) \ c \rightarrow c \)
Booleans (cont.)

- Other Boolean operations
 - Not = $\lambda x.((x \text{ false}) \text{ true})$
 - not true $\rightarrow \lambda x.((x \text{ false}) \text{ true}) \text{ true} \rightarrow ((\text{true false}) \text{ true}) \rightarrow \text{false}$
 - And = $\lambda x.\lambda y.((xy) \text{ false})$
 - Or = $\lambda x.\lambda y.((x \text{ true}) y)$

- Given these operations
 - Can build up a logical inference system
Discussion

• Lambda calculus is Turing-complete
 – Most powerful language possible
 – Can represent pretty much anything in “real” language
 • Using clever encodings
• But programs would be
 – Pretty slow
 – Pretty large
 – Pretty hard to understand
• In practice
 – We use richer, more expressive languages
 – That include built-in primitives
The Need For Types

• Consider the **untyped** lambda calculus
 – false = \(\lambda x.\lambda y.y \)
 – 0 = \(\lambda x.\lambda y.y \)

• Since everything is encoded as a function...
 – We can easily misuse terms...
 • false 0 \(\rightarrow \) \(\lambda y.y \)
 • if 0 then ...

 …because everything evaluates to some function

• The same thing happens in assembly language
 – Everything is a machine word (a bunch of bits)
 – All operations take machine words to machine words
Simply-Typed Lambda Calculus

• $e ::= n \mid x \mid \lambda x: t. e \mid e \ e$
 – Added integers n as primitives
 • Need at least two distinct types (integer & function)…
 • …to have type errors
 – Functions now include the type of their argument
Simply-Typed Lambda Calculus (cont.)

- \(t ::= \text{int} \mid t \rightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t_1 \rightarrow t_2 \) is the type of a function
 - That takes arguments of type \(t_1 \) and returns result of type \(t_2 \)
 - \(t_1 \) is the domain and \(t_2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions

- Will show how to compute types later
 - Example of operational semantics
Summary

• Lambda calculus shows issues with
 – Scoping
 – Higher-order functions
 – Types

• Useful for understanding how languages work