Reminders

- Homework 1 due on Monday
- Homework write-up guide online

- We begin with some review from last time...
Directed Acyclic Graphs (DAGs)

- A directed graph with no cycles
- Edge (start, end)
- Models precedence constraints
- **Topological order:** An ordering of a directed graph’s nodes v_1, v_2, \ldots, v_n, so that for every edge (v_i, v_j), $i < j$

Topological Ordering Algorithm

To compute a topological ordering of G:

1. Find a node v with no incoming edges and order it first
2. Delete v from G
3. Recursively compute a topological ordering of $G - \{v\}$
4. Append this order after v

- **Initialization:** For each node, determine the number of incoming edges. Create a set of edges for which this is 0. One scan through the graph – $O(n+m)$.
- **When deleting v,** update the counts for all adjacent nodes and add to the set if the count is 0 – $O(\text{deg}(v))$
- **Total time:** $O(n+m)$
Find a Topological Ordering

Is there more than one?

Check-in

• On your index card please write one of these three things:
 1. Too fast: If the review of graphs was too fast and you don’t feel ready to use them
 2. Too slow: If the review of graphs was too slow and you’re bored
 3. Just right: If you got what you needed out of the review and are ready to move on
Some Sample Problems

- Demonstrate a few types of problems that we’ll see during this course...

Interval Scheduling

- There is some resource
- n requests are made to use the resource
- Requests come in the form of some time interval
- The resource can only serve one request at once

Goal: Maximize the number of requests accepted
Solution strategy: a simple pass through a carefully sorted version of the data (Greedy Algorithms)
Weighted Interval Scheduling

- Interval scheduling, but each request is given some weight
- Same as interval scheduling for all weights equal to one
Goal: Maximize the total weight of the scheduled requests
Solution strategy: Build up all possible solutions to determine the optimal (Dynamic Programming)

Bipartite Matching

- Bipartite graph: the nodes can be partitioned into two sets that have no edges between them
- Matching: a set of pairs where each pair contains exactly one node from each of the two sets and no node appears more than once
Goal: Find the maximum matching given some bipartite graph
Solution strategy: Build up larger matchings by doing selective backtracking (Network Flow)
Independent Set Problem

- Independent set: a set of nodes in a graph such that no two nodes have an edge between them

Goal: Find the largest independent set in a given graph
Solution strategy: Hard to find a solution efficiently since the power set is large. Easy to check the solution.

Competitive Facility Location

- Two players alternately choose nodes to occupy in a node-weighted graph
- Chosen nodes must form an independent set with all other chosen nodes

Goal: Given some bound, is there a strategy so that a player can always occupy nodes with weights that sum to that bound
Solution strategy: Even hard to check the solution – it needs a case by case analysis.
Greedy Algorithms

• An algorithm that builds a solution in small steps
• Each small step makes a decision to come closest to the goal
 – E.g. Max algorithm
• Optimal greedy algorithms don’t exist for all problems
• Problems that have optimal greedy solutions have nice local properties

Greedy Proof Techniques

How do we prove that a greedy algorithm is optimal?
• Show that the greedy algorithm as a better solution after every step than any other algorithm could
• Show that any other solution can be transformed to the greedy solution without hurting its quality
Interval Scheduling

- Two requests are compatible if they don’t overlap
- Goal: Find maximum subset of mutually compatible requests

Interval Scheduling: Greedy Algorithm

- Basic idea: For each request in the list, use a simple rule to decide if it should be accepted. Once accepted, all other requests must be compatible with it to be accepted.

- What is the simple rule?
Interval Scheduling: Greedy Algorithm

Simple rule options that don’t work:

- counterexample for earliest start time
- counterexample for shortest interval
- counterexample for fewest conflicts

Simple rule that does work: accept the request that finishes first
• I.e., free up the resource as fast as possible

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

\[
A \leftarrow \emptyset \\
\text{for } j = 1 \text{ to } n \{
 \text{if (job } j \text{ compatible with } A) \\
 \quad A \leftarrow A \cup \{j\} \\
\}
\]

\text{return } A
Fill in the schedule:
Interval Scheduling

Time

0 1 2 3 4 5 6 7 8 9 10 11

A B C D E F G H

0 1 2 3 4 5 6 7 8 9 10 11

B E
Interval Scheduling: Analysis

• Analysis: $O(n \log n)$ time
 – Sorting $O(n \log n)$
 – Check compatibility in $O(1)$ by remembering last finish time

    ```
    Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.
    
    set of jobs selected
    \( A \leftarrow \emptyset \)
    for \( j = 1 \) to \( n \) {
        if (job \( j \) compatible with \( A \))
            \( A \leftarrow A \cup \{j\} \)
    }
    return \( A \)
    ```

Interval Scheduling: Analysis

Proof that the greedy algorithm is optimal:
• Show that the number of jobs scheduled is the same (not that the specific jobs are the same)
• Will try to “stay ahead” of the optimal solution at each step
• “Staying ahead” means that the \(r^{th} \) job chosen by the greedy algorithm doesn’t finish after the \(r^{th} \) job chosen by the optimal algorithm
• Note that by construction, the greedy solution is valid (i.e. all chosen jobs are compatible)
Interval Scheduling: Analysis

Lemma: Given finish time \(f(i_r) \) of the \(r^{th} \) job scheduled by the greedy algorithm and finish time \(f(j_r) \) of the \(r^{th} \) job scheduled by the optimal algorithm, \(f(i_r) \leq f(j_r) \) for all \(r \).

Proof (by induction):

Base case (\(r=1 \)): Greedy algorithm chooses minimum finish time.

Induction Hypothesis: Assume true for \(r-1 \).

Induction Step: Since \(f(i_{r-1}) \leq f(j_{r-1}) \), the greedy algorithm has job \(j_r \) as a compatible possibility. It chose the minimum finish time, so \(f(i_r) \leq f(j_r) \).
Interval Scheduling: Analysis

Theorem: The greedy algorithm is optimal.

Proof (by contradiction): Let m be the number of jobs scheduled by the optimal algorithm and k the number scheduled by the greedy algorithm.

- Assume $m > k$.
- By the lemma, $f(i_k) \leq f(j_k)$.
- Since $m > k$, the optimal algorithm schedules some job j_{k+1}.
- But j_{k+1} is compatible with the greedy set.

Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house.
Shortest Path Problem

Shortest path network.
- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length l_e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
\[= 9 + 23 + 2 + 16 = 50.\]

Dijkstra’s Algorithm

Input: edge-weighted graph $G = (V, E, l)$, source s, sink t
Let S be the set of explored nodes
For each u in S, store a distance $d(u)$
Initialize $S = \{s\}$ and $d(s) = 0$
While $S \neq V$
 Select a node v not in S with at least one edge from S such that
 $\pi(v) = \min_{e = (u, v), u \in S} d(u) + l_e$ is minimized
 Add v to S and set $d(v) = \pi(v)$
EndWhile
Dijkstra’s Algorithm

Input: edge-weighted graph \(G = (V, E, \ell) \), source \(s \), sink \(t \)
Let \(S \) be the set of explored nodes
For each \(u \) in \(S \), store a distance \(d(u) \)
Initialize \(S = \{s\} \) and \(d(s) = 0 \)
While \(S \neq V \)

Select a node \(v \) not in \(S \) with at least one edge from \(S \) such that \(\pi(v) \) is minimized

\[\pi(v) = \min_{e = (u, v): u \in S} \left(d(u) + \ell_e \right) \]

Add \(v \) to \(S \) and set \(d(v) = \pi(v) \)

EndWhile

Dijkstra’s Algorithm: Data Structure

Input: edge-weighted graph \(G = (V, E, \ell) \), source \(s \), sink \(t \)
Let \(S \) be the set of explored nodes
For each \(u \) in \(S \), store a distance \(d(u) \)
Initialize \(S = \{s\} \) and \(d(s) = 0 \)
While \(S \neq V \)

Select a node \(v \) not in \(S \) with at least one edge from \(S \) such that \(\pi(v) \) is minimized

\[\pi(v) = \min_{e = (u, v): u \in S} \left(d(u) + \ell_e \right) \]

Add \(v \) to \(S \) and set \(d(v) = \pi(v) \)

EndWhile

Need to be able to:
- Determine minimum \(\pi(v) \)
- Update \(d(v) \)
- Update \(S \)
Dijkstra’s Algorithm: Data Structure

Priority Queue:
- A data structure that maintains a set of elements S
- Each element has an associated key that indicates its priority
- Supports the following operations:
 1. Add an element to the queue
 2. Remove the element with the highest priority

Example Implementation: Heaps
- Tree-based data structure
- key(parent) ≥ key(child)
- Operations:
 1. Find max $\Theta(1)$
 2. Delete max $\Theta(\log n)$
 3. Increase key $\Theta(\log n)$
 4. Insert key/value pair $\Theta(\log n)$
 5. Merge: combine two heaps $\Theta(n)$

Dijkstra’s Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(v) = \min_{v \rightarrow (u,v) : u \in S} d(u) + \ell_e$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge $e = (v, w)$, update
 $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}$.

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.
Dijkstra's Algorithm: Time Analysis

Input: edge-weighted graph $G = (V, E, \pi)$, source s, sink t
Let S be the set of explored nodes
For each u in S, store a distance $d(u)$
Initialize $S = \{s\}$ and $d(s) = 0$
While $S \neq V$
 Select a node v not in S with at least one edge from S such that
 $\pi(v) = \min_{e = (u, v), u \in S} d(u) + \pi(u)$ is minimized
 Add v to S and set $d(v) = \pi(v)$
EndWhile

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Array</th>
<th>Binary heap</th>
<th>d-way Heap</th>
<th>Fib heap \dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log d n$</td>
<td>1</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log d n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>m</td>
<td>1</td>
<td>$\log n$</td>
<td>$\log d n$</td>
<td>1</td>
</tr>
<tr>
<td>isEmpty</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>n^2</td>
<td>$m \log n$</td>
<td>$m \log_{m/n} n$</td>
<td>$m + n \log n$</td>
<td></td>
</tr>
</tbody>
</table>

\dagger Individual ops are amortized bounds