Greedy Algorithms: Shortest Paths and Minimum Spanning Trees

CMSC 451, Summer 2009
Sorelle Friedler

Updates

• Survey says... we’re done with graph review
Review: Dijkstra’s Algorithm
Numb3rs Clip

Dijkstra’s Shortest Path Algorithm

Find shortest path from s to t.

Let $S=\{s\}$ and $d(s)=0$
For each u in S, store a distance $d(u)$
While $S \neq V$
 Select a node v not in S with at least one edge from S to minimize $\pi(v) = \left(\min_{u \in S} d(u) \right) + t_e$
 Add v to S and set $d(v) = \pi(v)$
Dijkstra’s Shortest Path Algorithm

S = \{ \}
PQ = \{ s, 2, 3, 4, 5, 6, 7, t \}

distance label

Dijkstra’s Shortest Path Algorithm

S = \{ \}
PQ = \{ s, 2, 3, 4, 5, 6, 7, t \}

delmin

distance label
Dijkstra’s Shortest Path Algorithm

\[S = \{ s \} \]
\[PQ = \{ 2, 3, 4, 5, 6, 7, t \} \]

[Diagram of a graph with nodes labeled 0, 2, 3, 6, 7, and 1, showing distances between nodes and operations like decrease key and delmin.]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2 \}
PQ = \{ 3, 4, 5, 6, 7, t \}
Dijkstra's Shortest Path Algorithm

$S = \{s, 2\}$
$PQ = \{3, 4, 5, 6, 7, t\}$

Dijkstra's Shortest Path Algorithm

$S = \{s, 2, 6\}$
$PQ = \{3, 4, 5, 7, t\}$
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[PQ = \{ 3, 4, 5, 7, t \} \]
Dijkstra’s Shortest Path Algorithm

$S = \{ s, 2, 6, 7 \}$

$PQ = \{ 3, 4, 5, t \}$
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[PQ = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[
S = \{ s, 2, 3, 4, 5, 6, 7 \} \\
PQ = \{ 4, t \}
\]
Dijkstra’s Shortest Path Algorithm

$S = \{ s, 2, 3, 4, 5, 6, 7 \}$
$PQ = \{ t \}$

Dijkstra’s Shortest Path Algorithm

$S = \{ s, 2, 3, 4, 5, 6, 7, t \}$
$PQ = \{ \}$
Dijkstra’s Shortest Path Algorithm

\[S = \{s, 2, 3, 4, 5, 6, 7, t\} \]
\[PQ = \{\} \]

Dijkstra’s Algorithm: Proof of Correctness

Invariant. For each node \(v \in S \), \(d(v) \) is the length of the shortest \(s-v \) path.

(Applying for \(v=t \) immediately gives the proof of optimality.)

Proof. (by induction on \(|S|\))

Base case: \(|S| = 1\), \(d(s) = d(t) = 0 \), which is the shortest it could be.

Inductive hypothesis: Assume true for \(|S| = k \geq 1\).

Induction step: Proof for \(|S| = k+1\)

- Let \(v \) be next node added to \(S \), and let \(u-v \) be the chosen edge.
- The shortest \(s-u \) path plus \((u, v)\) is an \(s-v \) path of length \(\pi(v) \).
- Consider any \(s-v \) path \(P \). We’ll see that it’s no shorter than \(\pi(v) \).
- Let \(x-y \) be the first edge in \(P \) that leaves \(S \), and let \(P' \) be the subpath to \(x \).
- \(P \) is already too long as soon as it leaves \(S \).
- \(d(v) \) is set to \(\pi(v) \)

\[
\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v)
\]

- nonnegative weights
- \(\ell \) and \(\pi \) inducative hypothesis
- defn of \(d \) and \(\pi \)
- Dijkstra chose \(v \) instead of \(y \)
Dijkstra's Algorithm: Greedy Perspective

What is the “step” in our step-by-step creation of a solution?
What is the greedy choice being made?

Note on proof: The analysis was in the “stay ahead” form

Spanning Tree

Given an undirected, connected graph G:

A spanning tree of G is a tree containing all vertices of G and some subset of the edges of G.

• maximal subset of edges of G with no cycle
• minimal subset of edges of G that connect all vertices
Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

T, $\Sigma_{e \in T} c_e = 50$

Cayley’s Theorem. There are n^{n-2} spanning trees of K_n.

Applications

MST is fundamental problem with diverse applications.

- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Cluster analysis.
Developing a Greedy Algorithm to Find a Minimum Spanning Tree

Options:

- Look at all nodes and consider their adjacent edges
- Look at all edges and their weights

Make greedy decisions to:

- Minimize total edge cost
- Maximize cost of edges not chosen

Greedy Algorithms

Kruskal’s algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.
Kruskal’s Algorithm

Find the minimum spanning tree using Kruskal’s algorithm:
Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete Algorithm

Find the minimum spanning tree using the Reverse-Delete algorithm:
Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.
Prim's Algorithm

Find the minimum spanning tree using Prim's algorithm:
Start with some root node s and greedily grow a tree T from s outward.
At each step, add the cheapest edge e to T that has exactly one endpoint in $T.$

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in $S.$ Then the MST contains $e.$

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to $C.$ Then the MST does not contain $f.$
Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

![Cycle Diagram](image1)

| Cycle C | 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 |

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

![Cutset Diagram](image2)

| Cut S | {4, 5, 8} |
| Cutset D | 5-6, 5-7, 3-4, 3-5, 7-8 |

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

![Intersection Diagram](image3)

Cycle C	1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D	3-4, 3-5, 5-6, 5-7, 7-8
Intersection	3-4, 5-6

Pf. (by picture)
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. (exchange argument)
- Suppose e does not belong to T^*, and let's see what happens.
- Adding e to T^* creates a cycle C in T^*.
- Edge e is both in the cycle C and in the cutset D corresponding to S \Rightarrow there exists another edge, say f, that is in both C and D.
- $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, cost(T') < cost(T^*).
- This is a contradiction. \blacksquare

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (exchange argument)
- Suppose f belongs to T^*, and let's see what happens.
- Deleting f from T^* creates a cut S in T^*.
- Edge f is both in the cycle C and in the cutset D corresponding to S \Rightarrow there exists another edge, say e, that is in both C and D.
- $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, cost(T') < cost(T^*).
- This is a contradiction. \blacksquare
Implementation: Prim’s Algorithm

Implementation. Use a priority queue ala Dijkstra.
- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v] =$ cost of cheapest edge v to a node in S.
- $O(n^2)$ with an array; $O(m \log n)$ with a binary heap.

```
Prim(G, c) {
    foreach (v ∈ V) a[v] ← ∞
    Initialize an empty priority queue Q
    foreach (v ∈ V) insert v onto Q
    Initialize set of explored nodes S ← φ

    while (Q is not empty) {
        u ← delete min element from Q
        S ← S ∪ {u}
        foreach (edge e = (u, v) incident to u)
            if ((v ∉ S) and (c_e < a[v]))
                decrease priority a[v] to c_e
    }
```

Prim’s Algorithm: Proof of Correctness (Sketch)

Prim’s algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
- Only edges belonging to the minimum spanning tree are added (by application of the cut property)
- A spanning tree is created since
 - No cycles exist since each added edge must have exactly one endpoint in S
 - All nodes are added, since this is the what determines that the algorithm stops
Kruskal’s Algorithm

Kruskal’s algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u’s connected component.

\[
\text{Kruskal}(G, c) \{
\text{Sort edge weights so that } c_1 \leq c_2 \leq \ldots \leq c_m.
\}
\]

\[
T \leftarrow \phi
\]

\[
\text{foreach (u }\in\text{ V)}
\]

\[
\text{make a set containing singleton u}
\]

\[
\text{for } i = 1 \text{ to } m \text{ are } u \text{ and } v \text{ in different connected components?}
\]

\[
(u, v) = e_i
\]

\[
\text{if (u and v are in different sets) } \{
T \leftarrow T \cup \{e_i\}
\text{merge the sets containing } u \text{ and } v
\}
\]

\[
\text{return } T
\]
Kruskal’s Algorithm: Proof of Correctness

Proof:
• Only edges in the MST are added since e must span the cut since it doesn’t create a cycle, and it is the cheapest (Cut property)
• A spanning tree is created
 • It contains no cycles by design of the algorithm
 • It is connected since otherwise there would be some edge that could be added without creating a cycle

Case 1

Case 2

Implementation: Kruskal’s Algorithm

```javascript
Kruskal(G, c) {
    Sort edge weights so that c_1 ≤ c_2 ≤ ... ≤ c_m.
    T ← φ
    foreach (u ∈ V) make a set containing singleton u
    for i = 1 to m
        (u,v) = e_i
        if (u and v are in different sets) {
            T ← T U {e_i}
            merge the sets containing u and v
        }
    return T
}
```

Implementation. Use the union-find data structure.

- MakeUnionFind(S): Returns a union-find data structure for set S
- Find(u): Return the name of the set containing node u
- Union(A,B): Merge the sets A and B into a single set
Union-Find Data Structure

MakeUnionFind(S={a,b})
Create singleton trees for all items in the set

Union(A={a},B={b})
Merge two connected components by creating a pointer from the root of the smaller tree to the root of the larger tree. Store the size of its tree with each root.

Find(a)
 Traverse up the tree until finding the root. The name of the root is the name of the tree.

Union-Find Data Structure: Analysis

MakeUnionFind(S={a,b})
Create singleton trees for all items in the set

Time analysis

O(n)

Union(A={a},B={b})
Merge two connected components by creating a pointer from the root of the smaller tree to the root of the larger tree. Store the size of its tree with each root.

O(1)

Find(a)
 Traverse up the tree until finding the root. The name of the root is the name of the tree.

O(log n): Takes time on the order of the number of times the name changed. Since the larger set keeps its name, a name change implies that the set at least doubled. It can be of size at most n.