Dynamic Programming:
Knapsack Problem and Sequence Alignment

CMSC 451, Summer 2009

Knapsack Problem

Knapsack problem.
- Given n objects and a "knapsack."
- Item i weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{ 3, 4 \} \) has value 40.

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).
Ex: \(\{ 5, 2, 1 \} \) achieves only value \(35 \) \(\Rightarrow \) greedy not optimal.
Knapsack Problem: Example

Input: n, W, w₁,…,wₙ, v₁,…,vₙ

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wᵢ > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vᵢ + M[i-1, w-wᵢ]}

return M[n, W]

Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\[W = 11 \]

\[\text{OPT: \{4, 3\}} \]

value = 22 + 18 = 40

\[W = 11 \]
Knapsack Problem: Proof of correctness

Proof of correctness.
- The algorithm examines the entire solution space and only the solution space by construction
 - All possibilities are considered since we consider all paths associated with choosing or not choosing to pack each object
 - The chosen solution is feasible since any item which puts us over the weight limit is not included
- The algorithm chooses the maximum value over the solution space by construction, since the recurrence returns the max of its two recursive calls

Knapsack Problem: Running Time

Running time. $\Theta(nW)$.
It takes $O(1)$ time to fill in each entry and there are nW such entries that are each filled in exactly once. Again, our progress measure is the number of nonempty entries, and this begins at 1 and increases by 1 until there are nW nonempty entries.
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]
 (Can a value of at least v be achieved without exceeding W?)

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]
6.6 Sequence Alignment

String Similarity

How similar are two strings?

- occurrence
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
Edit Distance

Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty δ; mismatch penalty α_{pq}.
- Cost = sum of gap and mismatch penalties.

\[\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA} \quad 2\delta + \alpha_{CA} \]

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and $x_{i'}$-$y_{j'}$ cross if $i < i'$, but $j > j'$.

\[
\text{cost}(M) = \sum_{(x_i, y_j) \in M} \alpha_{x_i y_j} + \sum_{i : x_i \text{ unmatched}} \delta + \sum_{j : y_j \text{ unmatched}} \delta
\]

Ex: CTACCG vs. TACATG.
Sol: $M = x_2$-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6.
\[C \quad T \quad A \quad C \quad C \quad - \quad G \]
\[- \quad T \quad A \quad C \quad A \quad T \quad G \]

\[y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6 \]
Sequence Alignment: Problem Structure

Def. $OPT(i, j) =$ min cost of aligning strings $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$.

- Case 1: OPT matches $x_i y_j$.
 - pay possible mismatch for $x_i y_j$ + min cost of aligning two strings $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_{j-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_j$
- Case 2b: OPT leaves y_j unmatched.
 - pay gap for y_j and min cost of aligning $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_{j-1}$

$$OPT(i, j) = \begin{cases}
 j\delta & \text{if } i = 0 \\
 \min \left\{ \alpha_{x_i y_j} + OPT(i-1, j-1), \right. \\
 \left. \delta + OPT(i-1, j), \delta + OPT(i, j-1) \right\} & \text{otherwise} \\
 i\delta & \text{if } j = 0
\end{cases}$$

Sequence Alignment: Algorithm

```plaintext
Sequence-Alignment(m, n, x_1 x_2 \ldots x_m, y_1 y_2 \ldots y_n, \delta, \alpha) {
    for i = 0 to m
        M[0, i] = i\delta
    for j = 0 to n
        M[j, 0] = j\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = \min(\alpha[x_i, y_j] + M[i-1, j-1], \delta + M[i-1, j], \delta + M[i, j-1])
    return M[m, n]
}
```
Sequence Alignment: Example

```c
Sequence-Alignment(m, n, x_1, x_2, ..., x_m, y_1, y_2, ..., y_n, δ, α) {
  for i = 0 to m
    M[0, i] = iδ
  for j = 0 to n
    M[j, 0] = jδ
  for i = 1 to m
    for j = 1 to n
      M[i, j] = min(α[|x_i, y_j|] + M[i-1, j-1],
                     δ + M[i-1, j],
                     δ + M[i, j-1])
  return M[m, n]
}
```

\[
\begin{align*}
X &= \text{CCGT} & m &= 4 \\
Y &= \text{CGTA} & n &= 4 \\
\delta &= 2 & \alpha_{AA} &= 0 & \alpha_{AC} &= 4 & \alpha_{AG} &= 4 & \alpha_{AT} &= 1 & \alpha_{CC} &= 0 & \alpha_{CG} &= 1 & \alpha_{CT} &= 2 \\
\alpha_{GG} &= 0 & \alpha_{GT} &= 2 & \alpha_{TT} &= 0
\end{align*}
\]

Sequence Alignment: Analysis

```c
Sequence-Alignment(m, n, x_1, x_2, ..., x_m, y_1, y_2, ..., y_n, δ, α) {
  for i = 0 to m
    M[0, i] = iδ
  for j = 0 to n
    M[j, 0] = jδ
  for i = 1 to m
    for j = 1 to n
      M[i, j] = min(α[|x_i, y_j|] + M[i-1, j-1],
                     δ + M[i-1, j],
                     δ + M[i, j-1])
  return M[m, n]
}
```

Analysis. \(\Theta(mn)\) time and space.

English words or sentences: \(m, n \leq 10\).

Computational biology: \(m = n = 100,000\). 10 billions ops OK, but 10GB array?