NP and NP-Complete

CMSC 451, Summer 2009

8.3 Definition of NP
Decision Problems

Decision problem.
- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

PRIMES: $X = \{ 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \ldots \}$

Definition of P

P. Decision problems for which there is a poly-time algorithm.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Algorithm</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPLE</td>
<td>Is x a multiple of y?</td>
<td>Grade school division</td>
<td>51, 17</td>
<td>51, 16</td>
</tr>
<tr>
<td>RELPRIME</td>
<td>Are x and y relatively prime?</td>
<td>Euclid (300 BCE)</td>
<td>34, 39</td>
<td>34, 51</td>
</tr>
<tr>
<td>PRIMES</td>
<td>Is x prime?</td>
<td>AKS (2002)</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>EDITDISTANCE</td>
<td>Is the edit distance between x and y less than 5?</td>
<td>Dynamic programming</td>
<td>neither</td>
<td>acgggt ttttta</td>
</tr>
</tbody>
</table>
| LSOLVE | Is there a vector x that satisfies $Ax = b$? | Gauss-Edmonds elimination | \[
\begin{bmatrix}
0 & 1 & 1 \\
2 & 4 & -2 \\
0 & 3 & 13
\end{bmatrix}
\]
| | | \[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\] |
Certification algorithm intuition.
- Certifier views things from "managerial" viewpoint.
- Certifier doesn’t determine whether \(s \in X \) on its own; rather, it checks a proposed proof \(t \) that \(s \in X \).

Def. Algorithm \(C(s, t) \) is a certifier for problem \(X \) if for every string \(s \), \(s \in X \) iff there exists a string \(t \) such that \(C(s, t) = \text{yes} \).

NP. Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.
Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \leq |s|$.

Certifier.

```java
boolean C(s, t) {
    if (t ≤ 1 or t ≥ s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

Instance. $s = 437,669$.

Certificate. $t = 541$ or 809. — $437,669 = 541 \times 809$

Conclusion. COMPOSITES is in NP.

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

\[
(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_1) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_3 \lor \overline{x}_4)
\]

Instance s

\[
x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1
\]

Certificate t

Conclusion. SAT is in NP.
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.

NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP$.

Pf. Consider any problem X in P.
- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate: $t = \varepsilon$, certifier $C(s, t) = A(s)$.

Claim. $NP \subseteq EXP$.

Pf. Consider any problem X in NP.
- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings t with $|t| = p(|s|)$.
- Return yes, if $C(s, t)$ returns yes for any of these.
The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
- Is the decision problem as easy as the certification problem?
- Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

The Simpson's: P = NP?

Copyright © 1990, Matt Groening
Futurama: \(P = NP? \)

Numb3rs: \(P = NP? \)
Looking for a Job?

Some writers for the Simpsons and Futurama.

8.4 NP-Completeness
Polynomial Transformation

Def. Problem \(X \) **polynomial reduces** (Cook) to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y \).

Def. Problem \(X \) **polynomial transforms** (Karp) to problem \(Y \) if given any input \(x \) to \(X \), we can construct an input \(y \) such that \(x \) is a **yes** instance of \(X \) iff \(y \) is a **yes** instance of \(Y \).

Note. Polynomial transformation is polynomial reduction with just one call to oracle for \(Y \), exactly at the end of the algorithm for \(X \). Almost all previous reductions were of this form.

Open question. Are these two concepts the same?

NP-Complete

NP-complete. A problem \(Y \) in \(NP \) with the property that for every problem \(X \) in \(NP \), \(X \leq_p Y \).

Theorem. Suppose \(Y \) is an NP-complete problem. Then \(Y \) is solvable in poly-time iff \(P = NP \).

Pf. \(\Rightarrow \) If \(P = NP \) then \(Y \) can be solved in poly-time since \(Y \) is in \(NP \).

Pf. \(\Leftarrow \) Suppose \(Y \) can be solved in poly-time.
- Let \(X \) be any problem in \(NP \). Since \(X \leq_p Y \), we can solve \(X \) in poly-time. This implies \(NP \subseteq P \).
- We already know \(P \subseteq NP \). Thus \(P = NP \).

Fundamental question. Do there exist "natural" NP-complete problems?
Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Pf. (sketch)

- Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of poly-size.

- Consider some problem X in NP. It has a poly-time certifier $C(s, t)$. To determine whether s is in X, need to know if there exists a certificate t of length $p(|s|)$ such that $C(s, t) = \text{yes}$.
- View $C(s, t)$ as an algorithm on $|s| + p(|s|)$ bits (input s, certificate t) and convert it into a poly-size circuit K.
 - first $|s|$ bits are hard-coded with s
 - remaining $p(|s|)$ bits represent bits of t
- Circuit K is satisfiable iff there exists t such that $C(s, t) = \text{yes}$.
Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

$G = (V, E), n = 3$

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 1.

$G = (V, E), n = 2$
Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that X ≤p Y.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that X ≤p Y then Y is NP-complete.

Pf. Let W be any problem in NP. Then W ≤p X ≤p Y.
- By transitivity, W ≤p Y.
- Hence Y is NP-complete.

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT ≤p 3-SAT since 3-SAT is in NP.
- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:
 - x₂ = ¬x₃ ⇒ add 2 clauses: x₂ ∨ x₃, x₂ ∨ ~x₅
 - x₁ = x₄ ∨ ¬x₅ ⇒ add 3 clauses: x₁ ∨ x₄, x₁ ∨ ~x₅, x₁ ∨ x₄ ∨ x₅
 - x₀ = x₁ ∧ x₂ ⇒ add 3 clauses: x₀ ∨ x₁, x₀ ∨ x₂, x₀ ∨ ~x₁ ∨ ~x₂

- Hard-coded input values and output value.
 - x₂ = 0 ⇒ add 1 clause: x₅
 - x₀ = 1 ⇒ add 1 clause: x₀

- Final step: turn clauses of length < 3 into clauses of length exactly 3. ▪
Observation. All problems below are NP-complete and polynomial reduce to one another!

by definition of NP-completeness

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.
Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.
Chemical engineering: heat exchanger network synthesis.
Civil engineering: equilibrium of urban traffic flow.
Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.
Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiogram.
Operations research: optimal resource allocation.
Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency.
Statistics: optimal experimental design.