Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. B
4. C

Code execution

- A \Rightarrow once
- B \Rightarrow n times
- C \Rightarrow once

Time $\Rightarrow 1 + n + 1 = O(n)$
Critical Section Example 2

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. B
4. for (int j = 0; j < n; j++)
5. C
6. D

Code execution

- A \Rightarrow once
- B \Rightarrow n times
- C \Rightarrow n^2 times
- D \Rightarrow once

Time $\Rightarrow 1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

Code (for input size \(n \))

1. A
2. for (int \(i = 0; i < n; i++ \))
3. for (int \(j = i+1; j < n; j++ \))
4. B

Code execution

- A \(\Rightarrow \) once
- B \(\Rightarrow \) \(\frac{1}{2} n (n-1) \) times

Time \(\Rightarrow 1 + \frac{1}{2} n^2 = O(n^2) \)
Critical Section Example 4

Code (for input size n)

1. A
2. for (int $i = 0; i < n; i++$)
3. for (int $j = 0; j < 10000; j++$)
4. B

Code execution

- $A \Rightarrow$ once
- $B \Rightarrow 10000 \ n \ times$

Time $\Rightarrow 1 + 10000 \ n = O(n)$
Critical Section Example 5

Code (for input size n)

1. $\text{for (int } i = 0; i < n; i++)$
2. $\text{for (int } j = 0; j < n; j++)$
3. A
4. $\text{for (int } i = 0; i < n; i++)$
5. $\text{for (int } j = 0; j < n; j++)$
6. B

Code execution

- $A \Rightarrow n^2$ times
- $B \Rightarrow n^2$ times

Time $\Rightarrow n^2 + n^2 = O(n^2)$

Critical sections
Critical Section Example 6

Code (for input size n)

1. \(i = 1 \)
2. while \(i < n \) {
3. A
4. \(i = 2 \times i \)
5. B

Code execution

- A \(\Rightarrow \log(n) \) times
- B \(\Rightarrow 1 \) times

Time \(\Rightarrow \log(n) + 1 = O(\log(n)) \)
Critical Section Example 7

Code (for input size n)

1. DoWork (int n)
2. if ($n == 1$)
3. A
4. else
5. DoWork($n/2$)
6. DoWork($n/2$)

Code execution

- A \Rightarrow 1 times
- DoWork($n/2$) \Rightarrow 2 times

Time(1) \Rightarrow 1 \hspace{1cm} Time(n) = $2 \times$ Time($n/2$) + 1
Recursive Algorithms

Definition

- An algorithm that calls itself

Components of a recursive algorithm

1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size \(n \))

1. DoWork (int \(n \))
2. if (\(n == 1 \))
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

- base case
- recursive cases
Comparing Complexity

- Compare two algorithms
 - $f(n)$, $g(n)$

- Determine which increases at faster rate
 - As problem size n increases

- Can compare ratio
 - If ∞, $f()$ is larger
 - If 0, $g()$ is larger
 - If constant, then same complexity

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)}
\]
Complexity Comparison Examples

- **log(n) vs. n^{½}**

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \longrightarrow \lim_{n \to \infty} \frac{\log(n)}{n^{½}} \longrightarrow 0
\]

- **1.001^n vs. n^{1000}**

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \longrightarrow \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \longrightarrow ??
\]

Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - Big-O \(\Rightarrow \mathcal{O}(...) \)
 - Represents upper bound on # steps

- **Lower bound**
 - Big-Omega \(\Rightarrow \Omega(...) \)
 - Represents lower bound on # steps

- **Combined bound**
 - Big-Theta \(\Rightarrow \Theta(...) \)
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

- **Problem**
 - \(C = A \times B \)

- **Lower bound**
 - \(\Omega(n^2) \) Required to examine 2D matrix

- **Upper bounds**
 - \(O(n^3) \) Basic algorithm
 - \(O(n^{2.807}) \) Strassen’s algorithm (1969)
 - \(O(n^{2.376}) \) Coppersmith & Winograd (1987)

- **Improvements still possible (open problem)**
 - Since upper & lower bounds do not match
Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Deterministic polynomial time</td>
</tr>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

If a problem has an algorithm that solves it in time X, then the problem is said to be in X.

- e.g., matrix multiplication is in P