CMSC 330: Organization of Programming Languages

Theory of Regular Expressions

Last Lecture

- Ruby language
 - Regular expressions
 - Arrays
 - Code blocks
 - Hash
 - File
 - Exceptions

Introduction

- That's it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation

- Next up: How do regular expressions (REs) really work?
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result

A Few Questions About REs

- What does a regular expression represent?
 - Just a set of strings

- What are the basic components of REs?
 - E.g., we saw that e+ is the same as ee*

- How are REs implemented?
 - We'll see how to build a structure to parse REs
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

Example alphabets:
- Binary: Σ = {0,1}
- Decimal: Σ = {0,1,2,3,4,5,6,7,8,9}
- Alphanumeric: Σ = {0-9,a-z,A-Z}

Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string (“” in Ruby)
 - |s| is the length of string s
 - |Hello| = 5, |ε| = 0
 - Note: Ø is the empty set (with 0 elements); Ø ≠ {ε}

Example strings:
- 0101 ∈ Σ = {0,1} (binary)
- 0101 ∈ Σ = decimal
- 0101 ∈ Σ = alphanumeric

Definition: Concatenation

- Concatenation is indicated by juxtaposition
 - If s₁ = super and s₂ = hero, then s₁s₂ = superhero
 - Sometimes also written s₁·s₂
 - For any string s, we have sε = s = sε
 - You can concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If s₁ = super ∈ Σ₁ = {s,u,p,e,r} and s₂ = hero ∈ Σ₂ = {h,e,r,o}, then s₁s₂ = superhero ∈ Σ₃ = {h,e,o,p,r,s,u}

Definition: Language

- A language is a set of strings over an alphabet

Example: The set of phone numbers over the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -}
 - Give an example element of this language (123) 456-7890
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language? /\d{3,3}\d{3,3}-\d{4,4}/

Example: The set of all strings over Σ
 - Often written Σ*
Definition: Language (cont.)

- Example: The set of strings of length \(0\) over the alphabet \(\Sigma = \{a, b, c\}\)
 - \(\{s \mid s \in \Sigma^* \text{ and } |s| = 0\} = \{\epsilon\} \neq \emptyset\)

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?
 No. Matching (an arbitrary number of) brackets so that they are balanced is impossible: \(\{\{\ldots\}\}\)

- Can REs represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages

Operations on Languages

- Let \(\Sigma\) be an alphabet and let \(L, L_1, L_2\) be languages over \(\Sigma\)

- Concatenation \(L_1L_2\) is defined as
 - \(L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}\)
 - Example: \(L_1 = \{\text{hi}, \text{bye}\}, L_2 = \{1^*, 2^*\}\)
 - \(L_1L_2 = \{\text{hi}1, \text{hi}2, \text{bye}1, \text{bye}2\}\)

- Union is defined as
 - \(L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}\)
 - Example: \(L_1 = \{\text{hi}, \text{bye}\}, L_2 = \{1^*, 2^*\}\)
 - \(L_1 \cup L_2 = \{\text{hi}, \text{bye}, 1^*, 2^*\}\)

Operations on Languages (cont.)

- Define \(L^n\) inductively as
 - \(L^0 = \{\epsilon\}\)
 - \(L^n = LL^{n-1}\) for \(n > 0\)

- In other words,
 - \(L^1 = LL^0 = L(\epsilon) = L\)
 - \(L^2 = LL^1 = LL\)
 - \(L^3 = LL^2 = LLL\)
 - \(\ldots\)

Examples of \(L^n\)

- Let \(L = \{a, b, c\}\)

- Then
 - \(L^0 = \{\epsilon\}\)
 - \(L^1 = \{a, b, c\}\)
 - \(L^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}\)
Operations on Languages (cont.)

- **Kleene closure** is defined as
 \[L^* = \bigcup_{i \in [0..\infty]} L^i \]
- In other words...
 \[L^* \] is the language (set of all strings) formed by concatenating together zero or more strings from \(L \)

Definition: Regular Expressions

- Given an alphabet \(\Sigma \), the regular expressions over \(\Sigma \) are defined inductively as

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>({ \varepsilon })</td>
</tr>
<tr>
<td>each element (\sigma \in \Sigma)</td>
<td>({ \sigma })</td>
</tr>
</tbody>
</table>

Constants

Definition: Regular Expressions (cont.)

- Let \(A \) and \(B \) be regular expressions denoting languages \(L_A \) and \(L_B \), respectively

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>(L_A L_B)</td>
</tr>
<tr>
<td>((A</td>
<td>B))</td>
</tr>
<tr>
<td>(A^*)</td>
<td>(L_A^*)</td>
</tr>
</tbody>
</table>

Operations

- There are no other regular expressions over \(\Sigma \)

Precedence

- Order in which operators are applied

 - In arithmetic

 \(\times > + \)

 \[2 \times 3 + 4 = (2 \times 3) + 4 = 10 \]

 - In regular expressions

 \(* > \cup > | \)

 \[ab|c = (a b) | c = \{ab, c\} \]

 \[ab^* = a (b^*) = \{a, ab, abb, \ldots\} \]

 \[ab^* = a (b^*) = \{a, \varepsilon, b, bb, bbb, \ldots\} \]

 - Can change order using parentheses ()

 E.g., \(a(b|c), (ab)^*, (a|b)^* \)
The Language Denoted by an RE

For a regular expression \(e \), we will write \([e]\) to mean the language denoted by \(e \)
- \([a] = \{a\}\)
- \([a|b]] = \{a, b\}\)

If \(s \in [RE] \), we say that \(RE \) accepts, describes, or recognizes \(s \)

Example 1

All strings over \(\Sigma = \{a, b, c\} \) such that all the \(a \)'s are first, the \(b \)'s are next, and the \(c \)'s last
- Example: aaabbbccc but not abcb

Regexp: \(a^*b^*c^* \)
- This is a valid regexp because:
 - \(a \) is a regexp (\([a] = \{a\}\))
 - \(a^* \) is a regexp (\([a^*] = \{\varepsilon, a, aa, ...\}\))
 - Similarly for \(b^* \) and \(c^* \)
 - So \(a^*b^*c^* \) is a regular expression
(Remember that we need to check this way because regular expressions are defined inductively.)

Which Strings Does \(a^*b^*c^* \) Recognize?

<table>
<thead>
<tr>
<th>String</th>
<th>Recognized</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabbcc</td>
<td>Yes; (aa \in [a^]), (bbb \in [b^]), and (cc \in [c^*]) so entire string is in ([a^*b^c^])</td>
</tr>
<tr>
<td>abb</td>
<td>Yes, (abb \in [abv]), and (\varepsilon \in [c^*])</td>
</tr>
<tr>
<td>ac</td>
<td>Yes</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>Yes</td>
</tr>
<tr>
<td>aacbc</td>
<td>No</td>
</tr>
<tr>
<td>abcd</td>
<td>No -- outside the language</td>
</tr>
</tbody>
</table>

Example 2

All strings over \(\Sigma = \{a, b, c\} \)
Regexp: \((a|b|c)^* \)
Other regular expressions for the same language?
- \((c|b|a)^* \)
- \((a^*b^*c^*)^* \)
- \((a^*b^*c^*)^* \)
- \(([a|b|c]^*|abc) \)
- etc.
Example 3

- All whole numbers containing the substring 330
- Regular expression: \((01|...9)^*330(01|...9)^*\)
- What if we want to get rid of leading 0's?
- \((1|...9)(0|...9)^*330(0|...9)^* | 330(0|...9)^*\)
- Any other solutions?

Challenge: What about all whole numbers not containing the substring 330?
- Is it recognized by a regexp? Yes. We'll see how to find it later...

Example 4

- What is the English description for the language that \((10|0)^*(10|1)^*\) denotes?
- \((10|0)^*\)
 - 0 may appear anywhere
 - 1 must always be followed by 0
- \((10|1)^*\)
 - 1 may appear anywhere
 - 0 must always be preceded by 1
- Put together, all strings of 0's and 1's where every pair of adjacent 0's precedes any pair of adjacent 1's
 - i.e., no 00 may appear after 11

Example 5

- What language does this regular expression recognize?
 - \((1|\epsilon)(0|1|...9) | (2(0|1|2|3))\) : \((0|1|...5)(0|1|...9)\)

- All valid times written in 24-hour format
 - 10:17
 - 23:59
 - 0:45
 - 8:30
Two More Examples

- **(00)(00)(1)***
 - Any string of 0's and 1's with no single 0's
- **(00)(0000)***
 - Strings with an even number of 0's
 - Notice that some strings can be accepted more than one way
 - 000000 = 00 00 = 00 00 = 00 00
 - How else could we express this language?
 - `(00)*`
 - `(00)(0000)*`
 - `(00)(0000)(000000)*`
 - etc...

Regular Languages

- The languages that can be described using regular expressions are the **regular languages** or **regular sets**
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma \)
 - reads the same backward or forward
 - \(\{a^n b^n | n > 0 \} \) (\(a^* = \text{sequence of } n \text{ a's}\))
 - Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

Ruby Regular Expressions

- Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
 - `/Ruby/` – concatenation of single-character REs
 - `/Ruby(Regular)/` – union
 - `/Ruby*/` – Kleene closure
 - `/Ruby\+/` – same as `(Ruby)(Ruby)*`
 - `/Ruby\?/` – same as `(Ruby)` (\(l\) is \(\epsilon\))
 - `/[a-zA-Z]/` – same as `(a|b|c|...)`
 - `/[^0-9]/` – same as `(a|b|c|...)` for \(a,b,c,... \in \Sigma - \{0..9\}\)
 - `^`, `$` – correspond to extra characters in alphabet

Summary

- **Languages**
 - Sets of strings
 - Operations on languages
- **Regular expressions**
 - Constants
 - Operators
 - Precedence