Announcements and Reminders

- Project 1 update due to CS dept. maintenance
 - On time projects due Saturday at 10pm!!
 - Late projects due Monday at midnight!
- Quiz 1 next Wednesday, June 16
 - Programming languages, Ruby, RE/FA
- RE/FA practice problems posted online
- Project 2 will be online tonight—due June 25
- Midterm 1 in 2 weeks—Wednesday, June 23
 - Programming languages, Ruby
 - Regular expressions, Finite automata
 - Context-free grammars (lectures next week)

CMSC 330: Organization of Programming Languages

Finite Automata 2

Last Lecture

- Finite automata
 - Alphabet, states...
 - (Σ, Q, q₀, F, δ)
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

This Lecture

- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions
- Example
 - After processing "a"
 - NFA may be in states S_1, S_2, S_3

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F, δ)
 - Output
 - DFA (Σ, R, r_0, F_d, δ)
 - Using
 - ε-closure(p)
 - move(p, a)

ε-transitions and ε-closure

- We say $p \overset{\varepsilon}{\Rightarrow} q$
 - If it is possible to go from state p to state q by taking only ε-transitions
 - If $\exists p, p_1, p_2, \ldots, p_n, q \in Q$ such that
 - $(p, x, p_1) \in \delta$, $(p_1, x, p_2) \in \delta$, \ldots, $(p_n, x, q) \in \delta$
- ε-closure(p)
 - Set of states reachable from p using ε-transitions alone
 - Set of states q such that $p \overset{\varepsilon}{\Rightarrow} q$
 - ε-closure(p) = {q | $p \overset{\varepsilon}{\Rightarrow} q$}
- Note
 - ε-closure(p) always includes p
 - ε-closure() may be applied to set of states (take union)
ε-closure: Example 1

Following NFA contains:
- S1 ⇨ S2
- S2 ⇨ S3
- S1 ⇨ S3

ε-closures:
- ε-closure(S1) = {S1, S2, S3}
- ε-closure(S2) = {S2, S3}
- ε-closure(S3) = {S3}
- ε-closure({S1, S2}) = {S1, S2, S3} ∪ {S2, S3}

ε-closure: Example 2

Following NFA contains:
- S1 ⇨ S3
- S3 ⇨ S2
- S1 ⇨ S2

ε-closures:
- ε-closure(S1) = {S1, S2, S3}
- ε-closure(S2) = {S2}
- ε-closure(S3) = {S2, S3}
- ε-closure({S2, S3}) = {S2} ∪ {S2, S3}

ε-closure: Practice

- Find ε-closures for following NFA:

- Find ε-closures for the NFA you construct for:
 - The regular expression (0|1)*111(0*|1)

Calculating move(p,a)

- move(p,a):
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that [p, a, q] ∈ δ
 - move(p,a) = {q | [p, a, q] ∈ δ}
 - Note move(p,a) may be empty Ø
 - If no transition from p with label a
move(a,p) : Example 1

Following NFA
- \(\Sigma = \{ a, b \} \)

Move
- move(S1, a) = \{ S2, S3 \}
- move(S1, b) = \emptyset
- move(S2, a) = \emptyset
- move(S2, b) = \{ S3 \}
- move(S3, a) = \emptyset
- move(S3, b) = \emptyset

move(a,p) : Example 2

Following NFA
- \(\Sigma = \{ a, b \} \)

Move
- move(S1, a) = \{ S2 \}
- move(S1, b) = \{ S3 \}
- move(S2, a) = \{ S3 \}
- move(S2, b) = \emptyset
- move(S3, a) = \emptyset
- move(S3, b) = \emptyset

NFA → DFA Reduction Algorithm

Input NFA (\(\Sigma, Q, q_0, F_n, \delta \)), Output DFA (\(\Sigma, R, r_0, F_d, \delta \))

Algorithm
- Let \(r_0 = \varepsilon\)-closure(\(q_0 \)), add it to R

While \(R \) is unmarked state \(r \) in R
- Mark \(r \)
- For each \(a \in \Sigma \)
 - Let \(S = \{ s \mid q \in r \& \text{move}(q, a) = s \} \) // states reached via \(a \)
 - Let \(e = \varepsilon\)-closure(\(S \)) // states reached via \(\varepsilon \)
 - If \(e \in R \)
 - If \(e \) is new
 - Add \(e \) to \(R \) (unmarked)
 - Add transition \(r \rightarrow e \)
 - Let \(\delta = \delta \cup \{ r, a, e \} \) // add transition \(r \rightarrow e \)
- Let \(F_d = \{ r \mid 3 s \in r \text{ with } s \in F_n \} \) // final if include state in \(F_n \)

NFA → DFA Example 1

Start = \(\varepsilon\)-closure(S1) = \{ S1, S3 \}

R = \{ S1, S3 \}

Move(S1, a) = S2

Move(S1, b) = S3

Move(S2, a) = S3

Move(S2, b) = S3

Move(S3, a) = S3

Move(S3, b) = S3

Start

(1,3) a

(2) b

S1

S2

S3

\(\varepsilon \)
NFA → DFA Example 1 (cont.)

• \(R = \{ \{S1,S3\}, \{S2\} \} \)
• \(r \in R = \{S2\} \)
• \(\text{Move}(\{S2\},a) = \emptyset \)
• \(\text{Move}(\{S2\},b) = \{S3\} \)
 \(\text{e} = \varepsilon \text{-closure}(\{S3\}) = \{S3\} \)
 \(R = R \cup \{S3\} = \{ \{S1,S3\}, \{S2\}, \{S3\} \} \)
• \(\delta = \delta \cup \{\{S2\}, b, \{S3\}\} \)

NFA

S1 \[a \rightarrow \] S2 \[b \rightarrow \] S3

DFA

(1,3) \[a \rightarrow] (2) \[b \rightarrow] (3)

NFA → DFA Example 2

NFA

```
\[ A \rightarrow B \]
\[ B \rightarrow C \]
\[ C \rightarrow D \]
```

R = \{ \{A\}, \{B,D\}, \{C,D\} \}

DFA

```
\[ A \rightarrow B, D \]
```

NFA → DFA Example 3

NFA

```
\[ A \rightarrow B \]
\[ B \rightarrow C \]
\[ C \rightarrow D \]
```

R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}

DFA

```
\[ A \rightarrow B, D, E \]
```

Since S3 \(\in F_n \)
• Done!
Equivalence of DFAs and NFAs

Any string from \{A\} to either \{D\} or \{CD\}
 • Represents a path from A to D in the original NFA

Can reduce any NFA to a DFA using subset alg.

How many states in the DFA?
 • Each DFA state is a subset of the set of NFA states
 • Given NFA with \(n\) states, DFA may have \(2^n\) states
 ▶ Since a set with \(n\) items may have \(2^n\) subsets
 • Corollary
 ▶ Reducing a NFA with \(n\) states may be \(O(2^n)\)

Minimizing DFA

Result from CS theory
 • Every regular language is recognizable by a minimum-state DFA that is unique up to state names

In other words
 • For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 • Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

Intuition
 • Look for states that we can distinguish from each other
 ▶ End up in different accept / non-accept state with identical input

Algorithm
 • Construct initial partition
 ▶ Accepting & non-accepting states
 • Iteratively refine partitions (until partitions remain fixed)
 ▶ Split a partition if members in partition have transitions to different partitions for same input
 ▶ Two states \(x, y\) belong in same partition if and only if for all symbols in \(\Sigma\) they transition to the same partition
 • Update transitions & remove dead states

J. Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," 1971
Splitting Partitions

- No need to split partition \(\{S,T,U,V\} \)
 - All transitions on \(a \) lead to identical partition \(P_2 \)
 - Even though transitions on \(a \) lead to different states

\[
\begin{array}{c}
S \\
T \\
U \\
V
\end{array}
\rightarrow
\begin{array}{c}
X \\
Y \\
Z
\end{array}
\]

\(P_1 \)
\(P_2 \)

Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)
 - Transitions on \(a \) from \(S,T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(R \) lead to partition \(P_3 \)

\[
\begin{array}{c}
S \\
T \\
U \\
V
\end{array}
\rightarrow
\begin{array}{c}
X \\
Y \\
Z
\end{array}
\]

\(P_1 \)
\(P_2 \)
\(P_3 \)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S,T,U\} \)
 - After splitting partition \(\{X,Y\} \) into \(\{X\}, \{Y\} \)
 - Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)

\[
\begin{array}{c}
S \\
T \\
U \\
V
\end{array}
\rightarrow
\begin{array}{c}
P_4 \\
X \\
Y
\end{array}
\]

\(P_1 \)
\(P_2 \)
\(P_3 \)

DFA Minimization Algorithm (1)

- Input DFA \((\Sigma, Q, q_0, F_n, \delta) \), Output DFA \((\Sigma, R, r_0, F_d, \delta) \)
- Algorithm
 - Let \(p_0 = F_n \), \(p_1 = Q - F \), \(R = \{ p | p \in (p_0,p_1) \text{ and } p \neq \emptyset \} \), \(P = \emptyset \)
 - While \(P \neq R \) do
 - // iteratively break up partition
 - Let \(P = R \), \(R = \emptyset \)
 - For each \(p \in P \) \(\{p_0,p_1\} = \text{split}(p,P) \) \(\text{// split, if necessary} \)
 - \(R = R \cup \{ p | p \in (p_0,p_1) \text{ and } p \neq \emptyset \} \)
 - \(r_0 = p \in R \text{ where } q_0 \in p \)
 - \(F_d = \{ p | p \in R \text{ and exists } s \in p \text{ such that } s \in F_n \} \)
 - \(\lambda(p,c) = q \text{ when } \lambda(s,c) = r \text{ where } s \in p \text{ and } r \in q \)
DFA Minimization Algorithm (2)

- Algorithm for $\text{split}(p, P)$
 - Choose some $r \in p$, let $q = p - \{r\}$, $m = \{\}$
 - For each $s \in q$
 - For each $c \in \Sigma$
 - If $\delta(r, c) = q$ and $\delta(s, c) = q_1$ and
 - there is no $p_1 \in P$ such that $q_0 \in p_1$ and $q_1 \in p_1$
 - $m = m \cup \{s\}$
 - Return $p - m, m$

Minimizing DFA: Example 1

- DFA
 - Initial partitions
 - Accept $\{R\} \rightarrow P_1$
 - Reject $\{S, T\} \rightarrow P_2$
 - Split partition? → Not required, minimization done
 - $\text{move}(S, a) = T \rightarrow P_2$ → $\text{move}(S, b) = R \rightarrow P_1$
 - $\text{move}(T, a) = T \rightarrow P_2$ → $\text{move}(T, b) = R \rightarrow P_1$

Minimizing DFA: Example 2

- DFA
 - Initial partitions
 - Accept $\{R\} \rightarrow P_1$
 - Reject $\{S, T\} \rightarrow P_2$
 - Split partition? → Not required, minimization done
 - $\text{move}(S, a) = T \rightarrow P_2$ → $\text{move}(S, b) = R \rightarrow P_1$
 - $\text{move}(T, a) = S \rightarrow P_2$ → $\text{move}(T, b) = R \rightarrow P_1$

Minimizing DFA: Example 3

- DFA
 - Initial partitions
 - Accept $\{R\} \rightarrow P_1$
 - Reject $\{S, T\} \rightarrow P_2$
 - Split partition? → Yes, different partitions for B
 - $\text{move}(S, a) = T \rightarrow P_2$ → $\text{move}(S, b) = T \rightarrow P_2$
 - $\text{move}(T, a) = T \rightarrow P_2$ → $\text{move}(T, b) = R \rightarrow P_1$
Complement of DFA

Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$

Complement of DFA (cont.)

Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state
 & every non-accepting state to an accepting state

Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

Reducing DFAs to REs

General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

Implementing DFAs

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
    case 0: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '
':     printf("rejected\n"); return 0;
            default:   printf("rejected\n"); return 0;
            }
            break;
    case 1: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '
':     printf("accepted\n"); return 1;
            default:   printf("rejected\n"); return 0;
            }
            break;
    default: printf("unknown state; I'm confused\n");
            break;
    }

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Run Time of DFA

- How long for DFA to decide to accept/reject string s?
  - Assume we can compute δ(q, c) in constant time
  - Then time to process s is O(|s|)
    - Can’t get much faster!
- Constructing DFA for RE A may take O(2^|A|) time
  - But usually not the case in practice
  - So there’s the initial overhead
  - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically "compiled" into tables for the generic algorithm
  - Can think of this as a simple byte code interpreter
  - But really just a representation of $(\Sigma, Q, q_0, (A_1, A_2)$, the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
  - i.e., can accept more than the regular languages
  - Can be useful in certain cases
  - Disadvantages
    - Nonstandard, plus can have higher complexity

Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
  - $(0|1)^*1|0^*$
  - Strings of alternating 0 and 1
  - $aba^*|b(ab)b$

Summary of Regular Expression Theory

- Finite automata
  - DFA, NFA

- Equivalence of RE, NFA, DFA
  - RE $\rightarrow$ NFA
    - Concatenation, union, closure
  - NFA $\rightarrow$ DFA
    - $\varepsilon$-closure & subset algorithm

- DFA
  - Minimization, complement
  - Implementation