CMSC 330: Organization of Programming Languages

Operational Semantics

Introduction

- We’ve looked at several formal methods for defining the syntax of a programming language
 - Regular expressions
 - Context-free grammars

- What about formal methods for defining the semantics of a programming language?
 - I.e., what does a program mean?

Roadmap: Compilation of Program

Formal Semantics

- Formal semantics of a programming language
 - Mathematical model of all possible computations performed by programs written in that language

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Formal Semantics (cont.)

- **Denotational semantics**
 - Translate parts of language into another language
 - Usually a mathematical function
 - Equivalent to compilation

- **Operational semantics**
 - Describe effect of parts of language
 - Usually on (a mathematical model of) an abstract machine
 - For lambda calculus, can use syntactic transformations
 - Equivalent to interpretation

- **Axiomatic semantics**
 - Describe each part of language through logical axioms

Operational Semantics

- We will briefly look at operational semantics
 - Using a subset of OCaml as an example

- **Useful for**
 - Specifying the meaning of a program
 - Proving the correctness of an algorithm
 - Through formal verification
 - For cryptographic algorithms, combinatorial circuits, etc...
 - Currently limited to smaller programs

Roadmap: Semantics of a Program

Grammar:
```
S ::= A | A + E | E
A ::= id | P * T | P
E ::= T + E | T
T ::= P | (E)
P ::= id | n | (E)
```

Program: `X = 2 + 3`

Compilation:
```
Push X
Push 2
Push 3
Add top 2
Assign top to second
```

Recursive Descent Parsing AST

Postorder:
```
X 2 3 + =
```

Evaluation

- We’re going to define a relation $E \rightarrow v$
 - This means “expression E evaluates to v”

- So we need a formal way of defining programs and of defining things they may evaluate to

- We’ll use grammars to describe each of these
 - One to describe abstract syntax trees E
 - One to describe OCaml values v
OCaml Programs

E ::= x | n | true | false | [] | if E then E else E | fun x = E | E E

- x stands for any identifier
- n stands for any integer
- true and false stand for the two boolean values
- [] is the empty list
- Using = in fun instead of -> to avoid some confusion later

Values

v ::= n | true | false | [] | v::v

- n is an integer (not a string corresponding to an integer)
- Same idea for true, false, []
- v1::v2 is the pair with v1 and v2
- This will be used to build up lists
- Notice: nothing yet requires v2 to be a list
- Important: Be sure to understand the difference between program text E and mathematical objects v
- E.g., the text 3 evaluates to the mathematical number 3
- To help, we’ll use different colors and italics
 - If not present, it’s up to you to remember which is which

Grammars for Trees

We’re just using grammars to describe trees

E ::= x | n | true | false | [] | if E then E else E | fun x = E | E E

v ::= n | true | false | [] | v::v

Given a program, we know how to convert it to an AST using recursive descent parsing

type ast =
 | Id of string
 | Num of int
 | Bool of bool
 | Nil
 | If of ast * ast * ast
 | Fun of string * ast
 | App of ast * ast

type value =
 | Val_Num of int
 | Val_Bool of bool
 | Val.Nil
 | Val.Pair of value *

Goal: For any AST, we want an operational rule to obtain a value that represents the execution of that AST

Operational Semantics Rules

n → n
true → true
false → false
[] → []

Each basic entity evaluates to its corresponding value
Operational Semantics Rules (cont.)

How about built-in functions?

\[(+) n m \rightarrow n + m \]
- We’re applying the \(+\) function
 - We put parens around it because it’s not in infix notation
 - We’ll skip this from now on
- Ignore currying for the moment
 - Pretend we have multi-argument functions
- On the right-hand side, we’re computing the mathematical sum; the left-hand side is source code
- But what about \(+ (+ 3 4) 5\)?
 - We need recursion

Rules with Hypotheses

To evaluate \(+ E_1 E_2\), we need to evaluate \(E_1\), then evaluate \(E_2\), then add the results

\[E_1 \rightarrow n \quad E_2 \rightarrow m \]
\[+ E_1 E_2 \rightarrow n + m \]
- This is call-by-value
- This is a “natural deduction” style rule
- It says that if the hypotheses above the line hold, then the conclusion below the line holds
 - i.e., if \(E_1\) executes to value \(n\) and if \(E_2\) executes to value \(m\), then \(+ E_1 E_2\) executes to value \(n + m\)

Error Cases

\[E_1 \rightarrow n \quad E_2 \rightarrow m \]
\[+ E_1 E_2 \rightarrow n + m \]
- What if \(E_1\) and \(E_2\) aren’t integers?
 - E.g., what if we write \(+ false true\)?
 - It can be parsed, but we can’t execute it
- Previous rule does not cover such a case
 - Because we wrote \(n, m\) in the hypothesis
 - So they must be integers
- Convention
 - If there is no rule to cover a case
 - Then the expression is erroneous
 - A program that evaluates to an erroneous expression
 - Produces a run-time error in practice

Trees of Semantic Rules

When we apply rules to an expression, we actually get a tree
- Corresponds to the recursive evaluation procedure
 - For example: \(+ (+ 3 4) 5\)

\[3 \rightarrow 3 \quad 4 \rightarrow 4 \]
\[(+ 3 4) \rightarrow 7 \quad 5 \rightarrow 5 \]
\[+ (+ 3 4) 5 \rightarrow 12 \]
Rules for If

- If $E_1 \rightarrow \text{true}$ then $E_2 \rightarrow v$
- If $E_1 \rightarrow \text{false}$ then $E_3 \rightarrow v$

Examples
- If false then 3 else 4 \rightarrow 4
- If true then 3 else 4 \rightarrow 3

Notice that only one branch is evaluated

Rule for ::

- $E_1 \rightarrow v_1$, $E_2 \rightarrow v_2$
- $\cdot : E_1, E_2 \rightarrow v_1 : v_2$

- So :: allocates a pair in memory
- Are there any conditions on E_1 and E_2?
 - No! We will allow E_2 to be anything
 - OCaml’s type system will disallow non-lists

Rules for Identifiers

- Let’s assume for now that the only identifiers are parameter names
 - Example: (fun x = x + 3) 4
 - When we see x in the body, we need to look it up
 - So we need to keep some sort of environment
 - This will be a map from identifiers to values

Semantics with Environments

- Extend rules to the form $A; E \rightarrow v$
 - Means in environment A, program text E evaluates to v

Notation
- We write • for the empty environment (may be omitted)
- We write $A(x)$ for the value that x maps to in A
- We write $A, x:v$ for the same environment as A, except x is now v
 - x might or might not have mapped to anything in A
- We write A, A' for the environment with the bindings of A' added to and overriding the bindings of A
Rules for Identifiers and Application

A; x → \(A(x) \)

To evaluate a user-defined function applied to an argument:
- Evaluate the argument (call-by-value)
- Evaluate the function body in an environment in which the formal parameter is bound to the actual argument
- Return the result

\[
A; E_2 → v \quad A, x: v; E_1 → v' \\
A; (\text{fun } x = E_1) \ E_2 → v'
\]

Example: \((\text{fun } x = + x 3) \ 4 = ?\)

\[
•; (\text{fun } x = + x 3) \ 4 \\
•; 4 → 4 \\
x; 4; + x 3 → 7
\]

\[
•; 4 → 7
\]

Nested Functions

- This works for cases of nested functions
 - ...as long as they are fully applied

- But what about the true higher-order cases?
 - Passing functions as arguments, and returning functions as results
 - We need closures to handle this case
 - ...and a closure was just a function and an environment
 - We already have notation around for writing both parts

Closures

- Formally, we add closures \((A, \lambda x.E)\) to values
 - \(A\) is the environment in which the closure was created
 - \(x\) is the parameter name
 - \(E\) is the source code for the body
- \(\lambda x\) is a binding of \(x\) in \(E\)
- \(v := n | true | false | [] | v::v | (A, \lambda x.E)\)
Revised Rule for Lambda

\[
A; \text{ fun } x = E \rightarrow (A, \lambda x.E)
\]

- To evaluate a function definition, create a closure when the function is created
 - Notice that we don’t look inside the function body

Revised Rule for Application

\[
A; E_1 \rightarrow (A', \lambda x.E) \quad A; E_2 \rightarrow v
\]

\[
A, A', x; v; E \rightarrow v'
\]

\[
A; (E_1, E_2) \rightarrow v'
\]

- To apply something to an argument:
 - Evaluate it to produce a closure
 - Evaluate the argument (call-by-value)
 - Evaluate the body of the closure, in
 - The current environment, extended with the closure’s environment, extended with the binding for the parameter

Example

\[
\text{let } <\text{previous}> = \text{ fun } x = (\text{ fun } y = + x y) \text{ 3}
\]

\[
\text{let } <\text{previous}> = \text{ fun } x = (\text{ fun } y = + x y) \text{ 3}
\]

\[
\text{let } <\text{previous}> = \text{ fun } x = (\text{ fun } y = + x y) \text{ 3}
\]

Example (cont.)

\[
\text{let } <\text{previous}> = \text{ fun } x = (\text{ fun } y = + x y) \text{ 3}
\]

\[
\text{let } <\text{previous}> = \text{ fun } x = (\text{ fun } y = + x y) \text{ 3}
\]
Why Did We Do This?

Operational semantics are useful for

- Describing languages
 - Not just OCaml! It’s pretty hard to describe a big language like C or Java, but we can at least describe the core components of the language

- Giving a precise specification of how they work
 - Look in any language standard – they tend to be vague in many places and leave things undefined

- Reasoning about programs
 - We can actually prove that programs do something or don’t do something, because we have a precise definition of how they work