CMSC 330, Practice Problems 4

1. OCaml and Functional Programming
 a. Define functional programming
 b. Define imperative programming
 c. Define iterative programming.
 d. Define higher-order functions
 e. Describe the relationship between type inference and static types
 f. Describe the properties of OCaml lists
 g. Describe the properties of OCaml tuples
 h. Define pattern variables in OCaml
 i. Describe the usage of “_” in OCaml
 j. Describe polymorphism
 k. Write a polymorphic OCaml function
 l. Describe variable binding
 m. Describe scope
 n. Describe lexical scoping
 o. Describe dynamic scoping
 p. Describe environment
 q. Describe closure
 r. Describe currying

2. OCaml Types & Type Inference
 Give the type of the following OCaml expressions:
 a. []
 b. 1::[]
 c. 1::2::[]
 d. [1;2;3]
 e. [[1];[1]]
 f. (1)
 g. (1,"bar")
 h. ([1,2], ["foo","bar"])
 i. [(1,"foo");(3,4,"bar")]
 j. let f x = 1
 k. let f (x) = x *. 3.14
 l. let f (x,y) = x
 m. let f (x,y) = x+y
 n. let f (x,y) = (x,y)
 o. let f (x,y) = [x,y]
 p. let f x y = 1
 q. let f x y = x*y
 r. let f x y = x::y
 s. let f x = match x with [] -> 1
 t. let f x = match x with (y,z) -> y+z
 u. let f (x::_) = x
 v. let f (_,y) = y
w. let f (x::y::_) = x+y
x. let f = fun x -> x + 1
y. let rec x = fun y -> x y
z. let rec f x = if (x = 0) then 1 else 1+f (x-1)
aa. let f x y z = x+y+z in f 1 2 3
bb. let f x y z = x+y+z in f 1 2
c. let f x y z = x+y+z in f
dd. let rec f x = match x with
 | [] -> 0
 | (_::t) -> 1 + f t
e. let rec f x = match x with
 | [] -> 0
 | (h::t) -> h + f t
ff. let rec f = function
 | [] -> 0
 | (h::t) -> h + (2*(f t))

3. OCaml Types & Type Inference
Write an OCaml expression with the following types:
a. int list
b. int * int
c. int -> int
d. int * int -> int
e. int -> int -> int
f. int -> int list -> int list
g. int list list -> int list
h. ‘a -> ‘a
i. ‘a * ‘b -> ‘a
j. ‘a -> ‘b -> ‘a
k. ‘a -> ‘b -> ‘b
l. ‘a list * ‘b list -> (‘a * ‘b) list
m. int -> (int -> int)

ocaml
4. OCaml Programs

What is the value of the following OCaml expressions? If an error exists, describe the error.

a. `2 ; 3`
b. `2 ; 3 + 4`
c. `(2 ; 3) + 4`
d. `if 1<2 then 3 else 4`
e. `let x = 1 in 2`
f. `let x = 1 in x+1`
g. `let x = 1 in x ; x+1`
h. `let x = (1, 2) in x ; x+1`
i. `(let x = (1, 2) in x) ; x+1`
j. `let x = 1 in let y = x in y`
k. `let x = 1 let y = 2 in x+y`
l. `let x = 1 in let x = x+1 in let x = x+1 in x`
m. `let x = x in let x = x+1 in let x = x+1 in x`

n. `let rec x y = x in 1`
o. `let rec x y = y in 1`
p. `let rec x y = y in x 1`

q. `let x y = fun z -> z+1 in x`
r. `let x y = fun z -> z+1 in x 1`
s. `let x y = fun z -> z+1 in x 1 1`
t. `let x y = fun z -> x+1 in x 1`
u. `let rec x y = fun z -> x+1 in x 1`
v. `let rec x y = fun z -> x+y in x 1`
w. `let rec x y = fun z -> x y in x 1`
x. `let rec x y = fun z -> x z in x 1`
y. `let x y = y 1 in x`
z. `let x y = y 1 in x`

aa. `let x y = y 1 in x`

bb. `let x y = y 1 in x fun z -> z + 1`
cc. `let x y = y 1 in x (fun z -> z + 1)`

dd. `let a = 1 in let f x y z = x+y+z+a in f 1 2 3`
e. `let a = 1 in let f x y z = x+y+z+a in f 1 2 -3`
5. OCaml Programming
 a. Write an OCaml function named \texttt{fib} that takes an int \(x \), and returns the Fibonacci number for \(x \). Recall that \(\text{fib}(0) = 0, \text{fib}(1) = 1, \text{fib}(2) = 1, \text{fib}(3) = 2 \).
 b. Write a function \texttt{find_suffixes} which applied to a list \(lst \) returns a list of all the suffixes of \(lst \). For instance, suffixes \([1;2;5] = \{ [1;2;5] ; [2;5] ; [5] \} \)
 c. Write an OCaml function named \texttt{map_odd} which takes a function \(f \) and a list \(lst \), applies the function to every other element of the list, starting with the first element, and returns the result in a new list.
 d. Use \texttt{map_odd} and \texttt{fib} applied to the list \([1;2;3;4;5;6;7] \) to calculate the Fibonacci numbers for 1, 3, 5, and 7.
 e. Using \texttt{map}, write a function \texttt{triple} which applied to a list of ints \(lst \) returns a list with all elements of \(lst \) tripled in value.
 f. Using \texttt{fold}, write a function \texttt{all_true} which applied to a list of booleans \(lst \) returns true only if all elements of \(lst \) are true.
 g. Using \texttt{fold} and anonymous helper functions, write a function \texttt{product} which applied to a list of ints \(lst \) returns the product of all the elements in \(lst \).
 h. Using \texttt{fold} and anonymous helper functions, write a function \texttt{find_min} which applied to a list of ints \(lst \) returns the smallest element in \(lst \).
 i. Using the \texttt{fold} function and anonymous helper functions, write a function \texttt{count_vote} which applied to a list of booleans \(lst \) returns a tuple \((x,y)\) where \(x \) is the number of true elements and \(y \) is the number of false elements.
 j. Using the function \texttt{count_vote}, write a function \texttt{majority} which applied to a list of booleans \(lst \) returns true if \(1/2 \) or more elements of \(lst \) are true.
6. OCaml Polymorphic Types

Consider a OCaml module Bst that implements a binary search tree:

```ocaml
module Bst = struct
  type bst =
  | Empty
  | Node of int * bst * bst

  let empty = Empty (* empty binary search tree *)
  let is_empty = function
    | Empty -> true
    | Node (_, _, _) -> false
  let rec insert n = function
    (* insert n into binary search tree *)
    | Empty -> Node (n, Empty, Empty)
    | Node (m, left, right) ->
      if m = n then Node (m, left, right)
      else if n < m then Node(m, (insert n left), right)
      else Node(m, left, (insert n right))

  (* Implement the following functions
    val min : bst -> int
    val remove : int -> bst -> bst
    val fold : ('a -> int -> 'a) -> 'a -> bst -> 'a
    val size : bst -> int
  *)
  let rec min = (* return smallest value in bst *)
  let rec remove n t = (* tree with n removed *)
  let rec fold f a t = (* apply f to nodes of t in inorder *)
  let size t = (* # of non-empty nodes in t *)
end
```

a. Is insert tail recursive? Explain why or why not.
b. Implement min as a tail-recursive function. Raise an exception for an empty bst. Any reasonable exception is fine.
c. Implement remove. The result should still be a binary search tree.
d. Implement fold as an inorder traversal of the tree so that the code

   ```ocaml
   List.rev (fold (fun a m -> m::a) [] t)
   ```

 will produce an (ordered) list of values in the binary search tree.
e. Implement size using fold.
7. Recursive Descent Parser in OCaml

The example OCaml recursive descent parser l5-parseArith_fact.ml employs a number of shortcuts. For instance, the function parseS handles the grammar rules for

\[S \rightarrow T + S | T \]

directly instead of first applying left factoring:

\[S \rightarrow T A \quad A \rightarrow + S | \text{epsilon} \]

However, we can still identify where code corresponding to parseA was inserted directly in the code for parseS, in the comments below:

```ocaml
let rec parseS lr = (* parseS *)
    let x = parseT lr in (* S \rightarrow T A *)
    match !lr with (* parseA *)
        | ('+':t) -> (* if lookahead = First( + S ) *)
            lr := t;
            Sum (x,parseS lr) (* A \rightarrow + S *)
        | _ -> x (* A \rightarrow \text{epsilon} *)
```

Similarly, the function parseF handles the grammar rules for

\[F \rightarrow U ! | U \]

directly instead of rewriting the grammar, creating the following productions:

\[F \rightarrow ? \quad B \rightarrow ? \]

You must identify where code corresponding to parseB was inserted directly in the code for parseF in the comments below:

```ocaml
let rec parseF lr = (* parseF *)
    let rec fHelper lr tmp = (* parseB *)
        match !lr with (* parseB *)
            | ('!'::t) -> (* 1: if lookahead = First( ? ) *)
                lr := t;
                Fact (fHelper lr tmp) (* 2: ? \rightarrow ? *)
            | _ -> tmp (* 3: ? \rightarrow ? *)
        in let x = parseU lr in (fHelper lr x) (* 4: ? \rightarrow ? *)
```