CMSC 132:
Object-Oriented Programming II

Advanced Tree Structures

Department of Computer Science
University of Maryland, College Park
Overview

- Binary trees
 - Balance
 - Rotation
- Multi-way trees
 - Search
 - Insert
- Indexed tries
Tree Balance

Degenerate
- Worst case
- Search in $O(n)$ time

Balanced
- Average case
- Search in $O(\log(n))$ time

Degenerate binary tree

Balanced binary tree
Tree Balance

Question

Can we keep tree (mostly) balanced?

Self-balancing binary search trees

AVL trees
Red-black trees

Approach

Select invariant (that keeps tree balanced)
Fix tree after each insertion / deletion
Maintain invariant using rotations
Provides operations with $O(\log(n))$ worst case
AVL Trees

- **Properties**
 - Binary search tree
 - Heights of children for node differ by at most 1

- **Example**

Heights of children shown in red
AVL Trees

History

Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

Algorithm

1. Find / insert / delete as a binary search tree
2. After each insertion / deletion
 a) If height of children differ by more than 1
 b) Rotate children until subtrees are balanced
 c) Repeat check for parent (until root reached)
Tree Rotations

- Changes shape of tree
 - Rotation moves one node up in the tree and one node down
 - Height is decreased by moving larger subtrees up and smaller subtrees down

- Types
 - Single rotation
 - Left
 - Right
 - Double rotation
 - Left-right
 - Right-left
Tree Rotation Example

Single right rotation

Before rotation:
```
  1
 /   \
2     3
```

After rotation:
```
  1
 /   \
2     3
```

Diagram showing the rotation.
Tree Rotation Example

Single right rotation

Node 4 attached to new parent
Example – Single Rotations

1. **Single Left Rotation**

 - Initial tree:
 - T_0
 - T_1
 - T_2
 - T_3

 - After rotation:
 - T_0
 - T_1
 - T_2
 - T_3

2. **Single Right Rotation**

 - Initial tree:
 - T_0
 - T_1
 - T_2
 - T_3

 - After rotation:
 - T_0
 - T_1
 - T_2
 - T_3
Example – Double Rotations

right-left double rotation

left-right double rotation
Red-black Trees

Properties

- Binary search tree
- Every node is red or black
- The root is black
- Every leaf is black
- All children of red nodes are black
- For each leaf, same # of black nodes on path to root

Characteristics

- Properties ensures no leaf is twice as far from root as another leaf
Red-black Trees

Example
Red-black Trees

History
- Discovered in 1972 by Rudolf Bayer

Algorithm
- Insert / delete may require complicated bookkeeping & rotations

Java collections
- TreeMap, TreeSet use red-black trees
Multi-way Search Trees

Properties

- Generalization of binary search tree
- Node contains 1…k keys (in sorted order)
- Node contains 2…k+1 children
- Keys in j^{th} child < j^{th} key < keys in $(j+1)^{th}$ child

Examples

```
  5  12
   /   /
  2   8  17
```
```
  5  8  15  33
     /   /   /
    1   3   7  9
       /    /    /    /
      19  21  44
```
Types of Multi-way Search Trees

- **2-3 tree**
 - Internal nodes have 2 or 3 children

- **Index search trie**
 - Internal nodes have up to 26 children (for strings)

- **B-tree**
 - \(T = \) minimum degree
 - Non-root internal nodes have \(T-1 \) to \(2T-1 \) children
 - All leaves have same depth
Multi-way Search Trees

Search algorithm
1. Compare key \(x \) to 1…k keys in node
2. If \(x = \) some key then return node
3. Else if \((x < \text{key } j) \) search child \(j \)
4. Else if \((x > \text{all keys}) \) search child \(k+1 \)

Example

Search(17)
Multi-way Search Trees

Insert algorithm

1. Search key x to find node n
2. If (n not full) insert x in n
3. Else if (n is full)
 a) Split n into two nodes
 b) Move middle key from n to n’s parent
 c) Insert x in n
 d) Recursively split n’s parent(s) if necessary
Multi-way Search Trees

Insert Example (for 2-3 tree)

Insert(4)

Before:

```
  5  12
  /   
 2  8  17
```

After:

```
  5  12
  /   
 2  4  8  17
```
Multi-way Search Trees

Insert Example (for 2-3 tree)

Insert(1)

Split node

Split parent
B-Trees

Characteristics

- Height of tree is $O(\log_T(n))$
- Reduces number of nodes accessed
- Wasted space for non-full nodes

Popular for large databases

- 1 node = 1 disk block
- Reduces number of disk blocks read
Indexed Search Tree (Trie)

- Special case of tree
- Applicable when
 - Key C can be decomposed into a sequence of subkeys C_1, C_2, \ldots, C_n
 - Redundancy exists between subkeys
- Approach
 - Store subkey at each node
 - Path through trie yields full key
Standard Trie Example

For strings

{ bear, bell, bid, bull, buy, sell, stock, stop }
Word Matching Trie

- Insert words into trie
- Each leaf stores occurrences of word in the text
Compressed Trie

Observation
- Internal node v of T is redundant if v has one child and is not the root

Approach
- A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain

Result
- Internal nodes have at least 2 children
- Some nodes have multiple characters
Compressed Trie

Example
Tries and Web Search Engines

- Search engine index
 - Collection of all searchable words
 - Stored in compressed trie

- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list

- Trie is kept in memory (fast)
- Occurrence lists kept in external memory
 - Ranked by relevance