CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need \(N-1 \) edges for \(N \) nodes
 - no cycles, can be thought of as a tree
- Can build tree during traversal

(a) Graph G
(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

```
Known = { start }
explore ( start );

void explore (Node X) {
    for each successor Y of X
        if (Y is not in Known)
            Parent[Y] = X
            Add Y to Known
            explore(Y)
}
```
Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

Many spanning trees possible

- Different breadth-first traversals
 - Nodes same distance visited in different order
- Different depth-first traversals
 - Neighbors of node visited in different order
- Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

Possible to have multiple MSTs
- Different spanning trees with same weight

Example applications
- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

\[S = \emptyset \]
\[P[] = \text{none for all nodes} \]
\[C[\text{start}] = 0, \ C[] = \infty \text{ for all other nodes} \]

while (not all nodes in S)

\[\text{find node K not in S with smallest } C[K] \]
\[\text{add K to S} \]
for each node J not in S adjacent to K

\[\text{if (} C[K] + \text{cost of } (K,J) < C[J] \text{)} \]
\[C[J] = C[K] + \text{cost of } (K,J) \]
\[P[J] = K \]

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = \emptyset
P[] = none for all nodes
C[start] = 0, C[] = \infty for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
 P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

\[
\text{tree} = \emptyset
\]

for each edge \((X,Y)\) in order

\[
\text{if it does not create a cycle}
\]

\[
\text{add (X,Y) to tree}
\]

\[
\text{stop when tree has N–1 edges}
\]

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles
1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

- **Traversal approach**
 - Traverse tree starting at X
 - If we can reach Y, adding (X,Y) would create cycle

- **Example**
 - **Question**
 - Add (X,Y) to MST?
 - **Answer**
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

- Connected subgraph approach
 - Maintain set of nodes for each connected subgraph
 - Initialize one connected subgraph for each node
 - If X, Y in same set, adding (X,Y) would create cycle
 - Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

- To test set membership
 - Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

Ordered set of edges

\(<A, B> \quad 5\
\)<A, C> \quad 9\
\)<B, C> \quad 13\
\)<C, D> \quad 15\
\/<B, D> \quad 17\

MST

Sets

Edge being considered for addition

1. \(A\) (\(\{A\}\)) \(B\) (\(\{B\}\)) \(C\) (\(\{C\}\)) \(D\) (\(\{D\}\))

\(<A, B> \quad \text{Include, since it connects two nodes in distinct sets}\)

2. \(A\) (\(\{A, B\}\)) \(B\) (\(\{C\}\)) \(C\) (\(\{D\}\))

\(<A, C> \quad \text{Include, since it connects two nodes in distinct sets}\)
MST – Connected Subgraph Example

Original graph

Ordered set of edges

\(<A, B>\) 5
\(<A, C>\) 9
\(<B, C>\) 13
\(<C, D>\) 15
\(<B, D>\) 17

MST

Sets

{A, B, C} {D}

Edge being considered for addition

\(<B, C>\) Reject, since it connects nodes in the same set and would create a cycle

\(<C, D>\) Include, since it connects two nodes in distinct sets

Finished
Union-Find Algorithm

- **Union-Find**
 - Algorithm & data structure
 - Very efficient for testing membership in disjoint sets

- **Problem description**
 - Start with n nodes, each in different subgraph
 - Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

- **Basic approach**
 - Each node has a parent pointer
 - Find – follow parent pointer(s) to root of tree
 - Union – point root of 1\(^{\text{st}}\) tree to root of 2\(^{\text{nd}}\) tree

- **Example**
 - Union(\text{a, b}) ; \text{union(c, d); union(b, d)}

![Diagram showing the Union-Find algorithm](image)
Union-Find Algorithm

- Path compression
 - Speeds up future `Find()` operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example

- `Find(d)`

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x, y) {
    if (x == 0)
        return y+1;
    if (y == 0)
        return A(x-1, 1);
    return A(x-1, A(x, y-1));
}
```

A() grows fast

- A(2,2) = 7
- A(3,3) = 61
- A(4,2) = $2^{65536} - 3$
- A(4,3) = $2^{2^{65536}} - 3$
- A(4,4) = $2^{2^{2^{65536}}} - 3$
Inverse Ackermann’s Function

Definition
- $\alpha(n)$ is the inverse Ackermann’s function
- $\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n$

Fun fact
- $\alpha(\text{number of atoms in universe}) = 4$

Union-find
- A sequence of n operations requires $O(n \, \alpha(n))$ time
- Practically speaking, indistinguishable from $O(n)$
Graph Summary

Graph data structure
- Very useful in practice
- Different representations

Many graph algorithms
- Traversal
- Shortest path
- Minimum spanning tree