CMSC 132: Object-Oriented Programming II

Algorithmic Complexity II

Department of Computer Science
University of Maryland, College Park
Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

Code (for input size \(n \))

1. A
2. for (int i = 0; i < n; i++) {
3. B
4. }
5. C

Code execution

- A \(\Rightarrow \) once
- B \(\Rightarrow \) \(n \) times
- C \(\Rightarrow \) once

Time \(\Rightarrow 1 + n + 1 = O(n) \)
Critical Section Example 2

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++) {
3. B
4. for (int j = 0; j < n; j++) {
5. C
6. }
7. } D

Code execution

- A \Rightarrow once
- B \Rightarrow n times
- C \Rightarrow n^2 times
- D \Rightarrow once

Time \Rightarrow $1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

- Code (for input size n)
 1. A
 2. for (int $i = 0; i < n; i++$) {
 3. for (int $j = i+1; j < n; j++$) {
 4. B
 5. }
 6. }

- Code execution
 - $A \Rightarrow$ once
 - $B \Rightarrow \frac{1}{2} n (n-1)$ times

- Time $\Rightarrow 1 + \frac{1}{2} n^2 = O(n^2)$
Critical Section Example 4

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++) {
3. for (int j = 0; j < 10000; j++) {
4. B
5. }
6. }

Code execution

- A \Rightarrow once
- B \Rightarrow 10000 n times
- Time \Rightarrow $1 + 10000 n = O(n)$
Critical Section Example 5

Code (for input size n)
1. for (int i = 0; i < n; i++) {
2. for (int j = 0; j < n; j++)
3. A
4. for (int i = 0; i < n; i++)
5. for (int j = 0; j < n; j++)
6. B

Code execution
A $\Rightarrow n^2$ times
B $\Rightarrow n^2$ times

Time $\Rightarrow n^2 + n^2 = O(n^2)$
Critical Section Example 6

Code (for input size n)

1. $i = 1$
2. while ($i < n$) {
3. A
4. $i = 2 \times i$
 }
5. B

Code execution

- A \Rightarrow log(n) times
- B \Rightarrow 1 times

Time \Rightarrow log(n) + 1 = $O(log(n))$
Critical Section Example 7

Code (for input size n)

1. `DoWork (int n)`
2. `if (n == 1)`
3. `A`
4. `else {`
5. `DoWork(n/2)`
6. `DoWork(n/2)`
7. `}`

Code execution

- $A \Rightarrow 1$ times
- $\text{DoWork}(n/2) \Rightarrow 2$ times
- $\text{Time}(1) \Rightarrow 1$

$\text{Time}(n) = 2 \times \text{Time}(n/2) + 1$
Recursive Algorithms

Definition

An algorithm that calls itself

Components of a recursive algorithm

1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size \(n \))

1. DoWork (int n)
2. if (n == 1)
3. A
4. else {
5. DoWork(n/2)
6. DoWork(n/2)
7. }

base case

recursive cases
Comparing Complexity

Compare two algorithms
- \(f(n) \), \(g(n) \)

Determine which increases at faster rate
- As problem size \(n \) increases

Can compare ratio
- If \(\infty \), \(f() \) is larger
- If 0, \(g() \) is larger
- If constant, then same complexity

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} \]
Complexity Comparison Examples

log(n) vs. \(n^{\frac{1}{2}} \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{\log(n)}{n^{\frac{1}{2}}} \quad \rightarrow \quad 0
\]

1.001^n vs. \(n^{1000} \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \quad \rightarrow \quad ??
\]

Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - Big-O \(\Rightarrow O(\ldots) \)
 - Represents upper bound on # steps

- **Lower bound**
 - Big-Omega \(\Rightarrow \Omega(\ldots) \)
 - Represents lower bound on # steps

- **Combined bound**
 - Big-Theta \(\Rightarrow \Theta(\ldots) \)
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

Problem
- \(C = A \times B \)

Lower bound
- \(\Omega(n^2) \): Required to examine 2D matrix

Upper bounds
- \(O(n^3) \): Basic algorithm
- \(O(n^{2.807}) \): Strassen’s algorithm (1969)
- \(O(n^{2.376}) \): Coppersmith & Winograd (1987)

Improvements still possible (open problem)
- Since upper & lower bounds do not match
Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Deterministic polynomial time</td>
</tr>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

If a problem has an algorithm that solves it in time X, then the problem is said to be in X

- e.g., matrix multiplication is in P
Definitions

- N → measure of problem size
- Growth rate → what we care about. We need to measure it
- Exponential Time Algorithm (O(k^n)) → algorithm requires trying every possibility (very slow)
- Polynomial Time Algorithm (O(n^k)) → algorithm can solve a problem in smart/quick way without trying every possibility.
 - Smart/quick → without using trial-and-error or brute force approach
 - A problem that can be solved in time O(n^k) for some constant k is solvable in polynomial time
Typical Problem: TSP

- **Traveling Salesman Problem (TSP)**
 - Given \rightarrow List of cities, distance between cities
 - Find \rightarrow shortest tour visiting all cities returning to start city

- Brute force solution requires roughly 2^n steps
- If we can get it down to 2^{n-5} we are still doing brute force with some tricks

- How can we say that we are NOT doing brute force?
 - By doing it in polynomial time!

- Even n^{14} would be a real advance since its not brute force
Definitions

P Problem
- Problem can be solved in polynomial time
- P stands for polynomial and represents the set of all problems that can be solved in polynomial time.

NP Problem
- Solution to the problem can be verified in polynomial time
- NP → does not stand for “not polynomial”. Stands for nondeterministic polynomial time
- Example → Given a number, is it composite (not prime)?
- Being able to verify does not make the problem easy
Type of Problems

Exponential Time

NP

NPC

NP-Hard

P
Definitions

- Every P problem is an NP problem
 - Every problem in P is in NP
 - Do not confuse with P = NP

- Reduction
 - Showing one problem (X) is solvable, given a subroutine for another (Y). Solving Y solves X

- NP-hard Problem
 - Every problem in NP can be reduced to it
NPC (NP-Complete) Problem

- Problem is both NP-hard and NP
- We can verify answer in polynomial time
- Every problem in NP reduces to it
- Solving any NP-Complete problem in polynomial time will solve every NP problem in polynomial time
- Many NPC problems, and so far no one has found a quick solution to any of them
NP-Complete Problems

- More than 3000 NP-Complete problems

- Traveling Salesman Problem
 - Given → List of cities, distance between cities
 - Find → shortest tour visiting all cities returning to start city

- Graph Coloring

- Organizing House Accommodations
P vs NP?

P = NP? asks:
- Does every problem that can be verified quickly can also be solved quickly?

No proof yet that P = NP or that P ≠ NP

P vs NP is one of the Clay Mathematics Institute Millennium Prize Problems
- You will receive 1 million dollars if you solve it
- http://www.claymath.org/millennium/
References

http://www.cs.princeton.edu/~kazad/resources/cs/npcourse.htm

Wikipedia

Dr. William Gasarch

Dr. David Mount

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein