CMSC 216
Introduction to Computer Systems
Lecture 20
System-Level I/O, and
Time Measurement
Administrivia

• Read Reek, Section 16.3 on time measurement
• Read Reek, Section 13.3 on function pointers
• Read Chapter 12 on ConcurrentProgramming
Parts of Sections 2.1-2.4, Bryant and O'Hallaron

DATA REPRESENTATION (CONT.)
How are floats/doubles represented?

• Each number has three parts:
 – its sign (s), which is 0 for positive numbers, and 1 for negative numbers
 – a mantissa (m), which represents a number between 0 and 1
 • it's represented as a binary number, i.e., \(\frac{1}{2} = 0.1 \)
 • it's normalized into \([1,2)\) (the exponent is adjusted as needed)
 – an exponent (e), which designates the position of the decimal point

• A number is \((-1)^s \times m \times r^e\), where \(r\) is the radix
 – the number \(6132.789_{10} = 1 \times 6.132789 \times 10^3\) (the radix is 10 for this example)
 – the number \(0.05_{10} = 1 \times 5.0 \times 10^{-2}\) (radix is also 10)
 – the number \(-1001.1110_2 = -1 \times 1.001110 \times 2^3\) (here the radix is 2)

• This is much like scientific notation, with the addition of the sign as a factor, and the ability to use a base other than 10
Floating point representation, cont.

- A number can be expressed as $-1^s \times m \times r^e$, where r is the radix
- Computers normally use a radix of 2
- Examples of floating point numbers
 - $10.5_{10} = 1010.1_2 = .10101 \times 2^4$
 - $7.4375_{10} = 111.0111_2 = .1110111 \times 2^3$
- Decimal/binary points:

<table>
<thead>
<tr>
<th>10³</th>
<th>10²</th>
<th>10¹</th>
<th>10⁰</th>
<th>10⁻¹</th>
<th>10⁻²</th>
<th>10⁻³</th>
<th>10⁻⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>2³</td>
<td>2²</td>
<td>2¹</td>
<td>2⁰</td>
<td>2⁻¹</td>
<td>2⁻²</td>
<td>2⁻³</td>
<td>2⁻⁴</td>
</tr>
</tbody>
</table>
The IEEE 754 floating point standard

• The IEEE 754 floating point standard has different sizes for values:
 – 32 bit floating point (C float):
 • 1 sign bit, 8 bits exponent, 23 bits mantissa
 • the range of representable values is approximately $2^{-126} .. 2^{128}$, which is approximately $1.2 \times 10^{-38} .. 3.4 \times 10^{38}$
 – 64 bit floating point (C double):
 • 1 sign bit, 11 bits exponent, 52 bits mantissa
 • this is the precision most commonly used for real applications
 • the range of representable values is approximately $2^{-1022} .. 2^{1024}$, which is approximately $2.2 \times 10^{-308} .. 1.8 \times 10^{308}$
 – 128 bit floating point (quad):
 • 1 sign bit, 15 bits exponent, 112 bits of mantissa
 • this is not commonly used
More about IEEE 754 floating-point numbers

• The leading 1 of the mantissa isn't stored:
 – the binary point (like a decimal point) is moved just to the right of the leftmost nonzero digit
 – but in binary, the leftmost nonzero digit must be a 1, so there's no need to actually store it, giving one more bit of precision in the mantissa for free

• The exponent:
 – uses a bias, rather than two's complement, for storing negative as well as positive exponents. The bias is added to the exponent's value.
 – the bias is 127 for single-precision IEEE numbers (C \texttt{float}'s), and 1023 for double-precision numbers (C \texttt{double}'s)

• The use of a bias allows the representation of the number zero to be all zeros; in fact, an exponent of all 1s or all 0s represents a special number
 – 0, infinities, NaN, denormalized numbers
Example IEEE floating-point number

• Here's how the example number -25.625 is represented in IEEE floating point (single precision):
 – The sign bit (one bit) is 1, since the number is negative; we compute the absolute value of the number below
 – To compute the mantissa (23 bits):
 • write the number in binary, with a binary point:
 \[25_{10} = 11001_2\]
 \[.625_{10} = \frac{1}{2} + \frac{1}{8}, \text{ which is } .101_2\]
 so \[25.625_{10} = 11001.101_2\]
 • move the binary point right after the first nonzero digit, giving \[1.1001101\] (moved 4 places to the left)
 • drop the leading 1 (and the binary point), giving 1001101
 • add zeros to the right to get 23 bits (here 16 zeros are needed)
 • so the mantissa is \[\textbf{1001101000000000000000000}\]
Example IEEE floating-point number, cont.

- Recall the example number is -25.625
 - To determine the exponent (8 bits):
 - in the previous step, we moved the binary point 4 places to the left to place it to the right of the first nonzero digit, so the exponent value is 4
 - to bias the exponent, we add 127; \(127 + 4 = 131\), so the value of the exponent field is 131
 - 131 in binary is 10000011
 - Putting it all together, the number is represented as
 \((-1)^1 \times 1.1001101 \times 2^4 = -1.6015625 \times 16 = -25.625\)
- And the number is stored in memory as
• The real numbers are dense (unlike the integers), but anything in computer memory has to be stored in a finite bit representation; this causes imprecision

• First consider an analogy with decimal numbers:
 – There are some numbers that can't be represented exactly in a finite number of digits - they require an infinite number of repeating digits
 – Example: $1/3 = .3333333333333...$
 – Suppose we have only a fixed number of decimal digits in which to express $1/3$, say for example 8 digits. The closest we can get is $.33333333$. But notice this is $0.0000000333333...$ away from the actual number $1/3$
 – The next representable number (if we only have 8 digits) is $.33333334$, and any number between these two can only be approximated as one or the other of these two values- there are no values between them
Imprecision with real numbers, cont.

- In binary there are also real numbers (not necessarily the same ones as in decimal) that can't be represented in a finite number of (binary) digits.
- Example: \((1/3)_{10} = .01010101010101010101\ldots\)
- Another example: \((1/5)_{10} = .00110011001100110011\ldots\)
- If we have only four binary digits, the closest we can come to representing \((1/5)_{10}\) is \(.0011\) \((1/8 + 1/16 = .1875)\).
- If we have eight binary digits, we can come closer to representing \((1/5)_{10}\): \(.00110011\) \((1/8 + 1/16 + 1/128 + 1/256 = .19921875)\). The more digits we have, the closer we can come to representing it.
- But we'll never get exactly to \(0.2_{10}\), if we only have a fixed number of binary digits in which to represent the number.
Imprecision with real numbers, cont.

- The IEEE representation of $1/5$, with a 23-digit mantissa, is $0.20000000298023223876953125$
- The next smaller bit pattern (only one bit different) is $0.199999988079071044921875000$
- There is no (single-precision) IEEE 754 float between these two values because, with a fixed 23 digits of mantissa, there is no bit pattern between them
- If you try to compute or store values between these, such as 0.19999998825, 0.19999998850, 0.19999998875, etc., they'll all be represented as $0.199999988079071044921875000$
Another example (a large number)

• The IEEE float 375207.297024.0 is represented as 01010010101011101011100000110010

• The next bit pattern is 01010010101011101011100000110011, which is the float 375207.329792.0

• These two numbers are 32,768 apart, yet there is no IEEE 754 float value between them
An example 32-bit number

• On a 32-bit machine, consider the bit pattern 1100110101011100000011001:
 – as an unsigned integer, this bit pattern represents the value 3445054489
 – as a two's complement signed integer, this bit pattern represents the value -849912807
 – and as a single-precision IEEE float, this bit pattern represents the value -225821072.0

• A pattern of bits can represent lots of different things - we need to know what kind of thing they're supposed to represent to make sense of them

• Given the information above, what does the following code print?

 unsigned int num = 3445054489;
 printf("%f\n", * (float *) &num);
Chapter 12, Bryant and O'Hallaron

CONCURRENT PROGRAMMING
Concurrency

• We have seen concurrency in our programs before, with processes, as well as ways for processes to communicate with each other (signals, pipes)

• Since processes have separate virtual address spaces, working with common data requires considerable communication and synchronization overhead

• Concurrency can provide speedups, however, if implemented properly on a multicore system
Threads

• The use of threads allows all the threads to access common memory inside a process
• Each thread has a separate thread context, including:
 – thread ID
 – stack
 – stack pointer
 – program counter
 – registers
 – condition codes
• Threads share:
 – heap memory
 – global/static memory
 – open files
 – shared libraries
 – virtual address space
Thread model

- Threads are scheduled similarly to processes; a thread that performs an I/O operation may be scheduled out of the processor while another thread is scheduled in.
- No parent-child relationship; the main (first) thread creates a peer thread, which are both then in the thread pool.
- Context switches between threads are much less expensive than those between processes.
Posix threads

• The standard interface for C threads
• Example of a Pthreads program:

```c
#include <pthread.h>
#include <stdio.h>

struct point {
    int x, y;
};
static void *print_point(void *pointp);

int main() {
    pthread_t tid;
    struct point pt = {3, 5};
    pthread_create(&tid, NULL, print_point, &pt);
    pthread_join(tid, NULL);
    return 0;
}

static void *print_point(void *pointp) {
    struct point arg = * (struct point *) pointp;
    printf("Point: (%d, %d)\n", arg.x, arg.y);
    return NULL;
}
```
Compiling Pthreads code

- To compile the example program, you need to tell `gcc` to use the pthread library when linking your executable.
- To do this, use the `-l` switch to `gcc`:
  ```
  gcc -o threadex threadex.c -lpthread
  ```
 - This same switch is needed to use many other libraries (math functions, for example).
 - If you forget this, your program will not compile, and you will get an error like this:
    ```
    /tmp/cc3VuzAe.o(.text+0x3a): In function `main':
     : undefined reference to `pthread_create'
    ```
 - You can add this flag to the `LDFLAGS` variable in your `Makefile` to have it work correctly.
- All of the functions we'll talk about that begin with "pthread_" require including `<pthread.h>`.
Creating a thread

• Use:

```c
int pthread_create(pthread_t *tid,
    pthread_attr_t *attr,
    void *(*func)(void *),
    void *arg);
```

– `tid` is a pointer to an allocated (dynamic or otherwise) `pthread_t` that will have the thread ID of the new thread placed in it.

– `attr` is a pointer that can be used to change the attributes of the new thread (but we'll usually just use `NULL`).

– `func` is a function pointer to the new thread's routine.

– `arg` is a pointer that will be passed to the new thread's routine when the thread is created; this is the way you pass arguments to a thread.

– returns 0 on success, nonzero on error.