CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Hashing

Department of Computer Science
University of Maryland, College Park
Introduction

• If you need to find a value in a list what is the most efficient way to perform the search?
 • Linear search
 • Binary search
 • Can we have O(1)?
Hashing

- Hashing
 - Hashing function \rightarrow function that maps data to a value (e.g., integer)
 - Hash Code/Hash Value \rightarrow value returned by a hash function
 - Hash functions can be used to speed up data access
 - We can achieve $O(1)$ data access using hashing

- Approach
 - Use hash function to convert key into number (hash value) used as index in hash table
Hashing

- Hash Table
 - Array indexed using hash values
 - Hash table A with size N
 - Indices of A range from 0 to N-1
 - Store in A[hashValue % N]
Hash Function

- Hash Function → Function for converting key into hash value
- For hash table of size N
 - Must reduce hash value to 0..N – 1
 - Can use modulo operator → hash value = Math.abs(keyValue % N)
- Example Problem
 - Assign 4 parking spaces to 4 people using
 - h(keyValue) = keyValue % 4
 - What happens if we have 4 spaces and 8 people?
 - Collision → Same hash value for multiple keys
- Bucket
 - Each table entry can be referred to as a bucket
 - In some implementations the bucket is represented by a list (those elements hashing to the same bucket are placed in the same list)
- Properties of a Good Hash Function
 - Distributes (scatters) values uniformly across range of possible values
 - It is not expensive to compute
Scattering Hash Values

- Hash function should **scatter** hash values uniformly across range of possible values
 - Reduces likelihood of conflicts between keys
- Hash(<everything>) = 0
 - Satisfies definition of hash function
 - But not very useful (all keys at same location)
- Could use Math.abs(keyValue % N)
 - Might not distribute values well
 - Particularly if N is a power of 2
- Multiplicative congruency method
 - Produces good hash values
 - Hash value = Math.abs((a * keyValue) % N)
 - Where
 - N is table size
 - a is large prime number
Hash Function

- **Example**

 - hash("apple") = 5
 - hash("watermelon") = 3
 - hash("grapes") = 8
 - hash("kiwi") = 0
 - hash("strawberry") = 9
 - hash("mango") = 6
 - hash("banana") = 2

- **Perfect hash function**

 - Unique values for each key

<table>
<thead>
<tr>
<th></th>
<th>kiwi</th>
<th>banana</th>
<th>watermelon</th>
<th>apple</th>
<th>mango</th>
<th>grapes</th>
<th>strawberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hash Function

- Suppose now
 - hash("apple") = 5
 - hash("watermelon") = 3
 - hash("grapes") = 8
 - hash("kiwi") = 0
 - hash("strawberry") = 9
 - hash("mango") = 6
 - hash("banana") = 2
 - hash("orange") = 3

- Collision
 - Same hash value for multiple keys
Beware of % (Modulo Operator)

- The % operator is integer remainder
 \[x \% y = x - y \times (x / y) \]
- Result may be negative
 \[-|y| < x \% y < +|y|\]
- \(x \% y\) has same sign as \(x\)
 - \(-3 \% 2 = -1\)
 - \(-3 \% -2 = -1\)
- Use Math.abs(\(x \% N\)) and not Math.abs(\(x\)) \% \(N\)
- About absolute value in Java
 - Math.abs(Integer.MIN_VALUE) == Integer.MIN_VALUE
 - Will happen 1 in \(2^{32}\) times (on average) for random int values
Hashing in Java

- Object class has built-in support for hashing
 - Method `int hashCode()` provides
 - Numerical hash value for any object
 - 32-bit signed int
 - Default `hashCode()` implementation
 - Usually just address of object in memory
 - Can override with new user definition
 - Must work with `equals()`
 - Must satisfy the “hash code contract”
Java Hash Code Contract

- **Java Hash Code Contract**

 if `a.equals(b) == true`, then we must **guarantee**

 `a.hashCode() == b.hashCode()`

- **Inverse is not true**

 `!a.equals(b) does not imply`

 `a.hashCode() != b.hashCode()`

 (Though Java libraries may be more efficient)

- **Converse is also not true**

 `a.hashCode() == b.hashCode()`

 does not imply `a.equals(b) == true`

- **hashCode()**

 - Must return same value for object in each execution, provided information used in `equals() comparisons on the object is not modified`
When to Override `hashCode`

- You must write classes that satisfy the Java Hash Code Contract.
- You will run into problems if you don’t satisfy the Java Hash Code Contract and use classes that rely on hashing (e.g., HashMap, HashSet)
 - Possible problem → You add an element to a set but cannot find it during a lookup operation
 - See code distribution example
- Does the default equals and `hashCode` satisfy the contract? **Yes!**
- If you implement the Comparable interface you should provide the appropriate equals method which leads to the appropriate `hashCode` method.
Java hashCode()

- Implementing hashCode()
 - Include only information used by equals()
 - Else 2 “equal” objects → different hash values
 - Using all/more of information used by equals()
 - Help avoid same hash value for unequal objects
- Example hashCode() functions
 - For pair of Strings
 - 1st letter of 1st str
 - 1st letter of 1st str + 1st letter of 2nd str
 - Length of 1st str + length of 2nd str
 - ∑ letter(s) of 1st str + ∑ letter(s) of 2nd str
Art and Magic of hashCode()

- There is no “right” hashCode function
 - Art involved in finding good hashCode function
 - Also for finding hashCode to hashBucket function
- From java.util.HashMap

  ```java
  static int hashBucket(Object x, int N) {
      int h = x.hashCode();
      h += ~(h << 9);
      h ^= (h >>> 14);
      h += (h << 4);
      h ^= (h >>> 10);
      return Math.abs(h % N);
  }
  ```