CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Recursive Algorithms

Department of Computer Science
University of Maryland, College Park
Recursion

- Recursion is a strategy for solving problems
 - A procedure that calls itself

Approach

- If (problem instance is simple/trivial)
 - Solve it directly
- Else
 - Simplify problem instance into smaller instance(s) of the original problem
 - Solve smaller instance using same algorithm
 - Combine solution(s) to solve original problem
Example – Factorial

• Factorial definition
 • \(n! = n \times (n-1) \times (n-2) \times (n-3) \times \ldots \times 3 \times 2 \times 1 \)
 • \(0! = 1 \)

• To calculate factorial of \(n \)
 • Base case
 • If \(n = 0 \), return 1
 • Recursive step
 • Calculate the factorial of \(n-1 \)
 • Return \(n \times (\text{the factorial of } n-1) \)

• Code

  ```
  int fact ( int n ) {
    if ( n == 0 ) return 1; // base case
    return n * fact(n-1);   // recursive step
  }
  ```
Properties

- Recursion relies on the call stack
 - State of current procedure is saved when procedure is recursively invoked
 - Every procedure invocation gets own stack space
 - Let’s draw a diagram for factorial(4)
- Any problem solvable with recursion may be solved with iteration (and vice versa)
 - Use iteration with explicit stack to store state
 - Algorithm may be simpler for one approach
Recursion vs. Iteration

- Recursive algorithm

```c
int fact ( int n ) {
    if ( n == 0 ) return 1;
    return n * fact(n-1);
}
```

Recursive algorithm is closer to factorial definition

- Iterative algorithm

```c
int fact ( int n ) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
        res = res * i;
    }
    return res;
}
```
Examples

• Find \rightarrow To find an element in an array
 • Base case
 • If array is empty, return false
 • Recursive step
 • If 1st element of array is given value, return true
 • Skip 1st element and recur on remainder of array

• Count Instances \rightarrow To count \# of elements in an array
 • Base case
 • If array is empty, return 0
 • Recursive step
 • Skip 1st element and recur on remainder of array
 • Add 1 to result

• Some recursive problems require an auxiliary function
 • Auxiliary function – the one that actually is recursive

• Example: ArrayExamples.java
Examples

• Let’s look at recursive solutions for a linked list
 • Find
 • Count
 • Print list
 • Print list in reverse
Recursion vs. Iteration

- **Iterative algorithms**
 - May be more efficient
 - No additional function calls
 - Run faster, use less memory

- **Recursive algorithms**
 - Higher overhead
 - Time to perform function call
 - Memory for call stack
 - May be simpler algorithm
 - Easier to understand, debug, maintain
 - Natural for backtracking searches
 - Suited for recursive data structures
 - Trees, graphs...
Making Recursion Work

• Designing a correct recursive algorithm
• Verify
 • Base case(s) is
 • Recognized correctly
 • Solved correctly
 • Recursive case
 • Solves 1 or more simpler subproblems
 • Can calculate solution from solution(s) to subproblems
 • Makes progress toward the base case
• Uses principle of proof by induction
Proof By Induction

• Mathematical technique

• A theorem is true for all $n \geq 0$ if
 • Base case
 • Prove theorem is true for $n = 0$, and
 • Inductive step
 • Assume theorem is true for n (inductive hypothesis)
 • Prove theorem must be true for $n+1$
Types of Recursion

• Tail recursion
 • Single recursive call at end of function
 • Example
 int factorial(int n, int partialResult) {
 if (n == 0)
 return partialResult;
 return factorial(n-1, n*partialResult);
 }

• Can easily transform to iteration (loop)
Types of Recursion

• Non-tail recursion
 • Recursive call(s) not at end of function
 • Example
    ```c
    int nontail( int n ) {
        ...  
        x = nontail(n-1) ;  
        y = nontail(n-2) ;  
        z = x + y;  
        return z;  
    }
    ```
 • Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

• Infinite recursion
 • If recursion not applied to simpler problem

```c
int bad ( int n ) {
  if ( n == 0 ) return 1;
  return bad(n);
}
```

• Infinite loop?
• Eventually halt when runs out of (stack) memory
 • Stack overflow
Possible Problems – Efficiency

- May perform excessive computation
 - If recomputing solutions for subproblems
- Example
 - Fibonacci numbers
 - fibonacci(0) = 0
 - fibonacci(1) = 1
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- **Example**: Fibonacci.java
Possible Problems – Efficiency

• Recursive algorithm to calculate fibonacci(n)
 • If n is 0 or 1, return 1
 • Else compute fibonacci(n-1) and fibonacci(n-2)
 • Return their sum
• Simple algorithm \Rightarrow exponential time $O(2^n)$
 • Computes fibonacci(1) 2^n times
• Can solve efficiently using
 • Iteration
 • Dynamic programming
 • Will examine different algorithm strategies later…
Examples of Recursive Algorithms

- Towers of Hanoi
- Binary search
- Quicksort
- N-queens
- Fractals
Example – Towers of Hanoi

- Problem
 - Move stack of disks between pegs
 - Can only move top disk in stack
 - Only allowed to place disk on top of larger disk
Example – Towers of Hanoi

• To move a stack of \(n \) disks from peg X to Y
 • Base case
 • If \(n = 1 \), move disk from X to Y
 • Recursive step
 • Move top \(n-1 \) disks from X to 3\(^{rd}\) peg
 • Move bottom disk from X to Y
 • Move top \(n-1 \) disks from 3\(^{rd}\) peg to Y

Iterative algorithm would take much longer to describe!
N-Queens

- **Goal**
 - Place queens on a board such that every row and column contains one queen, but no queen can attack another queen

- **Recursive approach**
 - To place queens on NxN board
 - Assume you’ve already placed K queens
Fractals

• Goal
 • Construct shapes using a simple recursive definition with a natural appearance

• Properties
 • Appears similar at all scales of magnification
 • Therefore “infinitely complex”
 • Not easily described in Euclidean geometry

Mandelbrot Set