CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Graph Implementation

Department of Computer Science
University of Maryland, College Park
Graph Implementation

• How do we represent nodes/edges?
 • Adjacency matrix
 • 2D array of neighbors
 • Adjacency list
 • List of neighbors
 • Adjacency set / map
 • Set / map of neighbors
• Important for very large graphs
 • Affects efficiency / storage
Adjacency Matrix

- Representation
 - Single array for entire graph
 - Unweighted graph
 - Matrix elements ⇒ boolean
 - Let’s see an example
 - Weighted graph
 - Matrix elements ⇒ weight
 - Let’s see an example
 - Undirected graph
 - Only upper / lower triangle matrix needed
 - Since n_j, n_k implies n_k, n_j
Adjacency List/Set/Map

- Representation
 - For each node store
 - List/Set of neighbors / successors
 - Linked list
 - Array list
 - For weighted graph
 - Also store weight for each edge
 - Using a Map is a good choice
 - For undirected graph with edge (a↔b)
 - Nodes a & b need to store each other as neighbor
 - For directed graph with edge (a→b)
 - Node a needs to store node b as neighbor
Adjacency List

- Example
 - Unweighted graph

 node 1: \{2, 3\}
 node 2: \{1, 3, 4\}
 node 3: \{1, 2, 4, 5\}
 node 4: \{2, 3, 5\}
 node 5: \{3, 4, 5\}

- Weighted graph

 node 1: \{2=3.7, 3=5\}
 node 2: \{1=3.7, 3=1, 4=10.2\}
 node 3: \{1=5, 2=1, 4=8, 5=3\}
 node 4: \{2=10.2, 3=8, 5=1.5\}
 node 5: \{3=3, 4=1.5, 5=6\}
Graph Space Requirements

- **Adjacency matrix**
 - \(\frac{1}{2} N^2 \) entries (for graph with \(N \) nodes, \(E \) edges)
 - Many empty entries for large, sparse graphs
- **Adjacency list**
 - \(2 \times E \) entries
- **Adjacency set / map**
 - \(2 \times E \) entries
 - Space overhead per entry
 - Higher than for adjacency list
Graph Time Requirements

- Adjacency matrix
 - Can find individual edge \((a,b)\) quickly
 - Examine entry in array \(\text{Edge}[a,b]\)
 - Constant time operation

- Adjacency list / set / map
 - Can find all edges for node \((a)\) quickly
 - Iterate through collection of edges for \(a\)
 - On average \(E / N\) edges per node
Graph Time Requirements

- Average Complexity of operations
 - For graph with N nodes, E edges

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adj Matrix</th>
<th>Adj List</th>
<th>Adj Set/Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find edge</td>
<td>O(1)</td>
<td>O(E/N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Insert edge</td>
<td>O(1)</td>
<td>O(E/N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Delete edge</td>
<td>O(1)</td>
<td>O(E/N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Enumerate edges for node</td>
<td>O(N)</td>
<td>O(E/N)</td>
<td>O(E/N)</td>
</tr>
</tbody>
</table>
Choosing Graph Implementations

- **Graph density**
 - Ratio edges to nodes (dense vs. sparse)

- **Graph algorithm**
 - Neighbor based
 - For each node X in graph
 - For each neighbor Y of X // adj list faster if sparse
 - doWork()
 - Connection based
 - For each node X in ...
 - For each node Y in ...
 - if (X,Y) is an edge // adj matrix faster if dense
 - doWork()