Algorithm Efficiency

• Efficiency
 • Amount of resources used by algorithm
 • Time, space

• Measuring efficiency
 • Benchmarking
 • Approach
 • Pick some desired inputs
 • Actually run implementation of algorithm
 • Measure time & space needed
 • Asymptotic analysis
Benchmarking

• Advantages
 • Precise information for given configuration
 • Implementation, hardware, inputs

• Disadvantages
 • Affected by configuration
 • Data sets (often too small)
 • Dataset that was the right size 3 years ago is likely too small now
 • Hardware
 • Software
 • Affected by special cases (biased inputs)
 • Does not measure intrinsic efficiency
Asymptotic Analysis

• Approach
 • Mathematically analyze efficiency
 • Calculate time as function of input size n
 • $T \approx O(f(n))$
 • T is on the order of $f(n)$
 • “Big O” notation

• Advantages
 • Measures intrinsic efficiency
 • **Dominates efficiency for large input sizes**
 • Programming language, compiler, processor irrelevant
Search Comparison

• For number between 1…100
 • Simple algorithm = 50 steps
 • Binary search algorithm = \(\log_2(n) = 7 \) steps
• For number between 1…100,000
 • Simple algorithm = 50,000 steps
 • Binary search algorithm = \(\log_2(n) \) (about 17 steps)
• Binary search is **much** more efficient!
Asymptotic Complexity

- Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(n/2 \) and \(4n+3 \) behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size
- For large values of \(n \)
 - \(\text{Time}(2n) / \text{Time}(n) \) approaches exactly 2
- Both are \(O(n) \) programs
- Example: \(2n + 100 \rightarrow O(n) \) (next slide)
Complexity Example

- $2n + 100 \Rightarrow \mathcal{O}(n)$
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - n^2 and $2n^2 + 8$ behave similarly
 - Run time roughly increases by 4 as input size doubles
 - Run time increases \textit{quadratically} with input size
- For large values of n
 - $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches 4
- Both are $O(n^2)$ programs
- \textbf{Example}: $\frac{1}{2} n^2 + 100 n \rightarrow O(n^2)$ (next slide)
Complexity Examples

- $\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2)$
Asymptotic Complexity

• Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\log_2(n))</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $\log_2(n)$ and $5 \times \log_2(n) + 3$ behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size
- For large values of n
 - $T(2n) - T(n)$ approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 - $\log_a N = (\log_b N) / (\log_b a)$
 - Both are $O(\log(n))$ programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs
Formal Definition of Big-O

- Function $f(n)$ is $O(g(n))$ if
 - For some positive constants M, N_0
 - $M \times g(n) \geq f(n)$, for all $n \geq N_0$
- Intuitively
 - For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

• \(2n^2 + 10n + 1000 \Rightarrow O(n^2)\)

• Select \(M = 4, N_0 = 100\)

• For \(n \geq 100\)
 • \(4n^2 \geq 2n^2 + 10n + 1000\) is always true

• Example \(\Rightarrow\) for \(n = 100\)
 • \(40000 \geq 20000 + 1000 + 1000\)
Observations

• For large values of n
 • Any $O(\log(n))$ algorithm is faster than $O(n)$
 • Any $O(n)$ algorithm is faster than $O(n^2)$
• Asymptotic complexity is a fundamental measure of efficiency
• Big-O results only valid for big values of n
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(n^k)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(k^n)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>O(n!)</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>O(n^n)</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size n, constant $k > 1$
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2^n)</td>
</tr>
<tr>
<td>3</td>
<td>(n^2)</td>
</tr>
<tr>
<td>4</td>
<td>(n\log(n))</td>
</tr>
<tr>
<td>5</td>
<td>(n)</td>
</tr>
<tr>
<td>6</td>
<td>(\log(n))</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing the growth of solution steps with problem size for different complexity categories.
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2^n</td>
</tr>
<tr>
<td>10</td>
<td>n^2</td>
</tr>
<tr>
<td>100</td>
<td>nlog(n)</td>
</tr>
<tr>
<td>1000</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>log(n)</td>
</tr>
</tbody>
</table>

Graph showing the growth of solution steps as a function of problem size for different complexity categories:
- 2^n (purple cross markers)
- n^2 (blue cross markers)
- $n\log(n)$ (red triangle markers)
- n (pink square markers)
- $\log(n)$ (blue diamond markers)
Calculating Asymptotic Complexity

- As \(n \) increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms
- Examples
 - \(2n + 100 \) \(\Rightarrow \) \(O(n) \)
 - \(10n + n\log(n) \) \(\Rightarrow \) \(O(n\log(n)) \)
 - \(100n + \frac{1}{2}n^2 \) \(\Rightarrow \) \(O(n^2) \)
 - \(100n^2 + n^3 \) \(\Rightarrow \) \(O(n^3) \)
 - \(1/1002^n + 100n^4 \) \(\Rightarrow \) \(O(2^n) \)
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Best/Worst Case Analysis

• **Best case**
 • Smallest number of steps required
 • Not very useful
 • Example ⇒ Find item in first place checked

• **Worst case**
 • Largest number of steps required
 • Useful for upper bound on worst performance
 • Real-time applications (e.g., multimedia)
 • Quality of service guarantee
 • Example ⇒ Find item in last place checked
Quicksort Example

- Quicksort
 - One of the fastest comparison sorts
 - Frequently used in practice

- Quicksort algorithm
 - Pick **pivot** value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists

- Quicksort properties
 - Average case = $O(n \log(n))$
 - Worst case = $O(n^2)$
 - Pivot ≈ smallest / largest value in list
 - Picking from front of nearly sorted list

- Can avoid worst-case behavior
 - Select random pivot value
Average Case Analysis

• Average case analysis
 • Number of steps required for “typical” case
 • Most useful metric in practice
 • Different approaches: average case, expected case

• Average case
 • Average over all possible inputs
 • Assumes all inputs have the same probability
 • Example
 • Case 1 = 10 steps, Case 2 = 20 steps
 • Average = 15 steps

• Expected case
 • Weighted average over all possible inputs
 • Based on probability of each input
 • Example
 • Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 • Average = 11 steps
Amortized Analysis

• Approach
 • Applies to worst-case sequences of operations
 • Finds average running time per operation
 • Example
 • Normal case = 10 steps
 • Every 10th case may require 20 steps
 • Amortized time = 11 steps

• Assumptions
 • Can predict possible sequence of operations
 • Know when worst-case operations are needed
 • Does not require knowledge of probability

• By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)