CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
Introduction

That’s it for the basics of Ruby

- If you need other material for your project, come to office hours or check out the documentation

Next up: How do regular expressions (REs) really work?

- Mixture of a very practical tool (string matching with REs) and some nice theory
- A great computer science result
A Few Questions About REs

- What does a regular expression represent?
 - Just a set of strings

- What are the basic components of REs?
 - E.g., we saw that e^+ is the same as ee^*

- How are REs implemented?
 - We’ll see how to build a structure to parse REs
Definition: Alphabet

- An alphabet is a finite set of symbols.
 - Usually denoted Σ

Example alphabets:
- Binary: $\Sigma = \{0, 1\}$
- Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
- Alphanumeric: $\Sigma = \{0-9,a-zA-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("""" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{\varepsilon\} \neq \varepsilon$

- Example strings:
 - $0101 \in \Sigma = \{0,1\}$ (binary)
 - $0101 \in \Sigma = \text{decimal}$
 - $0101 \in \Sigma = \text{alphanumeric}$
Definition: String concatenation

- String **concatenation** is indicated by juxtaposition
 - If \(s_1 = \text{super} \) and \(s_2 = \text{hero} \), then \(s_1s_2 = \text{superhero} \)
 - Sometimes also written \(s_1 \cdot s_2 \)
 - For any string \(s \), we have \(s\varepsilon = \varepsilon s = s \)
 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If \(s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\} \) and \(s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\} \),
 then \(s_1s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\} \)
Definition: Language

A language \(L \) is a set of strings over an alphabet.

Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
- Give an example element of this language: \((123) 456-7890\)
- Are all strings over the alphabet in the language? \(\text{No} \)
- Is there a Ruby regular expression for this language?
 \(/\(d{3,3}\)/ \(d{3,3}-d{4,4}/\)

Example: The set of all strings over \(\Sigma\)
- Often written \(\Sigma^*\)
Definition: Language (cont.)

- Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 - $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \} = \{\varepsilon\} \neq \emptyset$

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?

 No. Matching (an arbitrary number of) brackets so that they are balanced is impossible using REs \(\{ \{ \{ \ldots \} \} \} \)

- Can REs represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ
- Concatenation L_1L_2 is defined as
 - $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
- Union is defined as
 - $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$
- Kleene closure is defined as
 - $L^* = \{x \mid \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots\}$
Definition: Regular Expressions

Given an alphabet Σ, the regular expressions over Σ are defined inductively as

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each element $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Constants
Definition: Regular Expressions (cont.)

- Let A and B be regular expressions denoting languages L_A and L_B, respectively.

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$(A</td>
<td>B)$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

Operations

- There are no other regular expressions over Σ.
By applying operations on constants

- Generates a set of strings (i.e., a language)
- Examples
 - $a \rightarrow \{"a"\}$
 - $a|b \rightarrow \{"a"\} \cup \{"b"\} = \{"a", "b"\}$
 - $a^* \rightarrow \{\varepsilon\} \cup \{"a"\} \cup \{"aa"\} \cup \cdots = \{\varepsilon, "a", "aa", \ldots \}$

If $s \in$ language generated by a RE r, we say that r accepts, describes, or recognizes string s
Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets.

- Not all languages are regular:
 - Examples (without proof):
 - The set of palindromes over Σ
 - reads the same backward or forward
 - $\{a^n b^n \mid n > 0 \}$ ($a^n = \text{sequence of } n \text{ a’s}$)

- Almost all programming languages are not regular:
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition:

- `/Ruby/` – concatenation of single-character REs
- `/Ruby|Regular/` – union
- `/Ruby)/` – Kleene closure
- `/Ruby)+/` – same as `(Ruby)(Ruby)*`
- `/Ruby)?/` – same as `(ε|(Ruby))` (// is ε)
- `/[a-z]/` – same as `(a|b|c|...|z)`
- `/[^0-9]/` – same as `(a|b|c|...) for a,b,c,... ∈ Σ - {0..9}`
- `^, $` – correspond to extra characters in alphabet
Implementing Regular Expressions

- We can implement a regular expression by turning it into a **finite automaton**
 - A “machine” for recognizing a regular language
Finite Automata

- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- String is accepted if automaton is in final state when end of string reached
Finite Automata: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only 1 start state

- **Final states**
 - States with double circle
 - Can have 0 or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1

accepted
Finite Automaton: Example 2

0 0 1 0 1 0
not accepted

0 0 1 0 1 0
❤❤❤❤❤❤
What Language is This?

- All strings over \{0, 1\} that end in 1
- What is a regular expression for this language?
 \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>acc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>bbc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>aabbb</td>
<td>S1</td>
<td>Y</td>
</tr>
<tr>
<td>aa</td>
<td>S0</td>
<td>Y</td>
</tr>
<tr>
<td>ε</td>
<td>S0</td>
<td>Y</td>
</tr>
<tr>
<td>acba</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
What language does this DFA accept?

\[a^*b^*c^* \]

S3 is a dead state – a nonfinal state with no transition to another state.
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown.

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit.
Finite Automaton: Example 4

\[a^*b^*c^* \] again, so DFAs are not unique
Finite Automaton: Example 5

Description for each state

- **S0** = “Haven’t seen anything yet” OR “seen zero or more b’s” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”

Language?
-
 - (a|b)*abb