CMSC 330: Organization of Programming Languages

Finite Automata 2
Types of Finite Automata

- **Deterministic Finite Automata (DFA)**
 - Exactly one sequence of steps for each string
 - All examples so far

- **Nondeterministic Finite Automata (NFA)**
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
Comparing DFAs and NFAs

- NFAs can have *more* than one transition leaving a state on the same symbol.

- DFAs allow only one transition per symbol:
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA
NFA for \((a|b)^*abb\)

- \(ba\)
 - Has paths to either \(S0\) or \(S1\)
 - Neither is final, so rejected

- \(babaabb\)
 - Has paths to different states
 - One path leads to \(S3\), so accepts string
Language?
• (ab|aba)*
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states S0, S1

- **ababa**
 - Has paths to S0, S1
 - Need to use \(\varepsilon\)-transition
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma\) is an alphabet
 - the strings recognized by the DFA are over this set
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
 - How many can there be?
- \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
 - What's this definition saying that \(\delta\) is?

A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

\[
\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
S0 & S0 & S1 \\
S1 & S0 & S1 \\
\end{array}
\]
An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma\) is an alphabet
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
- \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions
 - Transitions on \(\varepsilon\) are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol

An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)
Reducing Regular Expressions to NFAs

Goal: Given regular expression e, construct NFA: $<e> = (\Sigma, Q, q_0, F, \delta)$

- Remember regular expressions are defined recursively from primitive RE languages
- Invariant: $|F| = 1$ in our NFAs
 - Recall $F =$ set of final states

Base case: a

$$<a> = (\{a\}, \{S0, S1\}, S0, \{S1\}, \{(S0, a, S1)\})$$
Reduction (cont.)

- Base case: ε

 $<\varepsilon> = (\varepsilon, \{S0\}, S0, \{S0\}, \emptyset)$

- Base case: \emptyset

 $<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$
Reduction: Concatenation

- Induction: AB
Reduction: Concatenation (cont.)

- Induction: \(AB \)

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\]
\[<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})\]
Reduction: Union

Induction: \((A|B)\)
Reduction: Union (cont.)

Induction: \((A|B)\)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\)
- \(<(A|B)> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})\)
Reduction: Closure

- Induction: A^*
Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*>= (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$
 \[
 \delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\}\)
Reduction Complexity

Given a regular expression A of size n...

Size = # of symbols + # of operations

How many states does $\langle A \rangle$ have?

- 2 added for each $|$, 2 added for each $*$
- $O(n)$
- That’s pretty good!
Practice

- Draw NFAs for the following regular expressions and languages
 - $(0|1)^*110^*$
 - $101^*|111$
 - all binary strings ending in 1 (odd numbers)
 - all alphabetic strings which come after “hello” in alphabetic order
 - $(ab^*c|d^*a|ab)d$
Recap

- **Finite automata**
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- **Types**
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- **Reducing RE to NFA**
 - Concatenation
 - Union
 - Closure
Next

- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions

- Example
 - After processing “a”
 - NFA may be in states
 S1
 S2
 S3
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states

- Example
Reducing NFA to DFA (cont.)

- Reduction applied using the **subset** algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - **Input**
 - NFA \((\Sigma, Q, q_0, F_n, \delta)\)
 - **Output**
 - DFA \((\Sigma, R, r_0, F_d, \delta)\)
 - **Using**
 - \(\varepsilon\)-closure(p)
 - move(p, a)
ε-transitions and ε-closure

- **We say** $p \xrightarrow{\varepsilon} q$
 - If it is possible to go from state p to state q by taking only ε-transitions
 - If $\exists p, p_1, p_2, \ldots, p_n, q \in Q$ such that
 - $\{p, \varepsilon, p_1\} \in \delta$, $\{p_1, \varepsilon, p_2\} \in \delta$, \ldots, $\{p_n, \varepsilon, q\} \in \delta$

- **ε-closure(p)**
 - Set of states reachable from p using ε-transitions alone
 - Set of states q such that $p \xrightarrow{\varepsilon} q$
 - ε-closure(p) = $\{q \mid p \xrightarrow{\varepsilon} q\}$
 - **Note**
 - ε-closure(p) always includes p
 - ε-closure() may be applied to set of states (take union)
ε-closure: Example 1

- Following NFA contains
 - $S_1 \xrightarrow{\varepsilon} S_2$
 - $S_2 \xrightarrow{\varepsilon} S_3$
 - $S_1 \xrightarrow{\varepsilon} S_3$

- ε-closures
 - ε-closure(S_1) = \{ S_1, S_2, S_3 \}
 - ε-closure(S_2) = \{ S_2, S_3 \}
 - ε-closure(S_3) = \{ S_3 \}
 - ε-closure(\{ S_1, S_2 \}) = \{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \}
\(\epsilon\)-closure: Example 2

- Following NFA contains
 - \(S1 \xrightarrow{\epsilon} S3\)
 - \(S3 \xrightarrow{\epsilon} S2\)
 - \(S1 \xrightarrow{\epsilon} S2\)

- \(\epsilon\)-closures
 - \(\epsilon\)-closure(\(S1\)) = \{ \(S1, S2, S3\) \}
 - \(\epsilon\)-closure(\(S2\)) = \{ \(S2\) \}
 - \(\epsilon\)-closure(\(S3\)) = \{ \(S2, S3\) \}
 - \(\epsilon\)-closure(\{ \(S2, S3\) \}) = \{ \(S2\) \} \cup \{ \(S2, S3\) \}
ε-closure: Practice

Find ε-closures for following NFA

Find ε-closures for the NFA you construct for

- The regular expression \((0|1^*)111(0^*|1)\)
Calculating move(p,a)

- move(p,a)
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that \{p, a, q\} ∈ δ
 - move(p,a) = \{q | \{p, a, q\} ∈ δ\}
 - Note move(p,a) may be empty Ø
 - If no transition from p with label a
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{ \text{a, b} \}$

- Move
 - $\text{move}(S1, \text{a}) = \{ S2, S3 \}$
 - $\text{move}(S1, \text{b}) = \emptyset$
 - $\text{move}(S2, \text{a}) = \emptyset$
 - $\text{move}(S2, \text{b}) = \{ S3 \}$
 - $\text{move}(S3, \text{a}) = \emptyset$
 - $\text{move}(S3, \text{b}) = \emptyset$
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(S1, a) = \{ S2 \}$
 - $\text{move}(S1, b) = \{ S3 \}$
 - $\text{move}(S2, a) = \{ S3 \}$
 - $\text{move}(S2, b) = \emptyset$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$
NFA \rightarrow DFA Reduction Algorithm

Input NFA $(\Sigma, Q, q_0, F_n, \delta)$, Output DFA $(\Sigma, R, r_0, F_d, \delta)$

Algorithm

Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state

While \exists an unmarked state $r \in R$ // process DFA state r
 Mark r // each state visited once
 For each $a \in \Sigma$ // for each letter a
 Let $S = \{s \mid q \in r \& \text{move}(q,a) = s\}$ // states reached via a
 Let $e = \varepsilon$-closure(S) // states reached via ε
 If $e \notin R$ // if state e is new
 Let $R = e \cup R$ // add e to R (unmarked)
 Let $\delta = \delta \cup \{r, a, e\}$ // add transition $r \rightarrow e$
 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$ // final if include state in F_n
NFA \rightarrow DFA Example 1

- Start = ε-closure(S1) = \{ {S1,S3} \}
- R = \{ {S1,S3} \}
- r \in R = {S1,S3}
- Move({S1,S3},a} = {S2}
 - $e = \varepsilon$-closure({S2}) = {S2}
 - R = R \cup {S2} = \{ {S1,S3}, {S2} \}
 - $\delta = \delta \cup \{ {S1,S3}, a, {S2} \}$
- Move({S1,S3},b} = \emptyset
NFA → DFA Example 1 (cont.)

• \(R = \{ \{S1, S3\}, \{S2\} \} \)
• \(r \in R = \{S2\} \)
• \(\text{Move}({S2}, a) = \emptyset \)
• \(\text{Move}({S2}, b) = \{S3\} \)

 ➢ \(e = \varepsilon\text{-closure}({S3}) = \{S3\} \)

 ➢ \(R = R \cup \{S3\} = \{ \{S1, S3\}, \{S2\}, \{S3\} \} \)

 ➢ \(\delta = \delta \cup \{\{S2\}, b, \{S3\}\} \)
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1,S3\}, \{S2\}, \{S3\} \} \)
- \(r \in R = \{S3\} \)
- \(\text{Move}(\{S3\}, a) = \emptyset \)
- \(\text{Move}(\{S3\}, b) = \emptyset \)
- \(F_d = \{\{S1,S3\}, \{S3\}\} \)
 - Since \(S3 \in F_n \)
- Done!
NFA → DFA Example 2

NFA

\[R = \{ \{A\} , \{B,D\} , \{C,D\} \} \]
NFA \rightarrow DFA Example 3

R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}
Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

NFA

DFA
Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)
Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names

- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

J. Hopcroft, “An $n \log n$ algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \textit{a} lead to identical partition \textit{P2}
 - Even though transitions on \textit{a} lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S, T, U\}
 - After splitting partition \{X, Y\} into \{X\}, \{Y\}
 - Need to split partition \{S, T, U\} into \{S, T\}, \{U\}
DFA Minimization Algorithm (1)

- **Input**: DFA $(\Sigma, Q, q_0, F_n, \delta)$, **Output**: DFA $(\Sigma, R, r_0, F_d, \delta)$

- **Algorithm**

 Let $p_0 = F_n$, $p_1 = Q - F$ // initial partitions = final, nonfinal states
 Let $R = \{ p \mid p \in \{p_0,p_1\} \text{ and } p \neq \emptyset \}$, $P = \emptyset$ // add p to R if nonempty
 While $P \neq R$ do // while partitions changed on prev iteration
 Let $P = R$, $R = \emptyset$ // $P = \text{prev partitions, } R = \text{current partitions}$
 For each $p \in P$ // for each partition from previous iteration
 \[\{p_0,p_1\} = \text{split}(p,P) \] // split partition, if necessary
 \[R = R \cup \{ p \mid p \in \{p_0,p_1\} \text{ and } p \neq \emptyset \} \] // add p to R if nonempty
 \[r_0 = p \in R \text{ where } q_0 \in p \] // partition w/ starting state
 \[F_d = \{ p \mid p \in R \text{ and exists } s \in p \text{ such that } s \in F_n \} \] // partitions w/ final states
 \[\delta(p,c) = q \text{ when } \delta(s,c) = r \text{ where } s \in p \text{ and } r \in q \] // add transitions
DFA Minimization Algorithm (2)

Algorithm for **split(p, P)**

Choose some \(r \in p \), let \(q = p - \{r\} \), \(m = \{\} \) // pick some state \(r \) in \(p \)

For each \(s \in q \) // for each state in \(p \) except for \(r \)

For each \(c \in \Sigma \) // for each symbol in alphabet

If \(\delta(r, c) = q_0 \) and \(\delta(s, c) = q_1 \) and // q’s = states reached for \(c \)

there is no \(p_1 \in P \) such that \(q_0 \in p_1 \) and \(q_1 \in p_1 \) then

\(m = m \cup \{s\} \) // add \(s \) to \(m \) if q’s not in same partition

Return \(p - m \), \(m \) // \(m \) = states that behave differently than \(r \)

// \(m \) may be \(\emptyset \) if all states behave the same

// \(p - m \) = states that behave the same as \(r \)
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \{ R \} \rightarrow P1
 - Reject \{ S, T \} \rightarrow P2

- **Split partition? → Not required, minimization done**
 - move(S,a) = T \rightarrow P2 – move(S,b) = R \rightarrow P1
 - move(T,a) = T \rightarrow P2 – move(T,b) = R \rightarrow P1

- After cleanup
Minimizing DFA: Example 2

- **DFA**

 ![DFA Diagram]

- **Initial partitions**
 - Accept: \{ R \} → P1
 - Reject: \{ S, T \} → P2

- **Split partition? → Not required, minimization done**
 - move(S,a) = T → P2
 - move(S,b) = R → P1
 - move(T,a) = S → P2
 - move(T,b) = R → P1

- **After cleanup**
Minimizing DFA: Example 3

DFA

Initial partitions
- Accept \{ R \} → P1
- Reject \{ S, T \} → P2

Split partition? → Yes, different partitions for B
- move(S,a) = T → P2
- move(T,a) = T → P2
- move(S,b) = T → P2
- move(T,b) = R → P1

DFA already minimal
Complement of DFA

Given a DFA accepting language L

- How can we create a DFA accepting its complement?
- Example DFA
 - $\Sigma = \{a,b\}$
Complement of DFA (cont.)

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- **Note this only works with DFAs**
 - Why not with NFAs?
Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement
Implementing DFAs

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();

    switch (cur_state) {
        case 0: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
            default:   printf("rejected\n"); return 0;
        }
        break;

        case 1: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
            default:   printf("rejected\n"); return 0;
        }
        break;

        default: printf("unknown state; I'm confused\n");
        break;
    }
}
```
Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

![Algorithm for table-driven DFA](image)

given components $(\Sigma, Q, q_0, F, \delta)$ of a DFA:

let $q = q_0$
while (there exists another symbol s of the input string)

 $q := \delta(q, s)$;

if $q \in F$ then

 accept
else reject

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set
Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice

- So there’s the initial overhead
 - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Practice

- Convert to a DFA
- Convert to an NFA and then to a DFA
 - $(0|1)^*11|0^*$
 - Strings of alternating 0 and 1
 - $aba^*|(ba|b)$
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 - Concatenation, union, closure
 - NFA \rightarrow DFA
 - ϵ-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation