CMSC 330: Organization of Programming Languages

Parsing
Recall: Steps of Compilation

source program → Compiler → target program

Lexing → Parsing → Intermediate Code Generation → Optimization
Implementing Parsers

- Many efficient techniques for parsing
 - I.e., turning strings into parse trees
 - Examples
 - LL(k), SLR(k), LR(k), LALR(k)…
 - Take CMSC 430 for more details

- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm
 - Other algorithms are bottom-up
Top-Down Parsing

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for

{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)
- Example grammar
 - $S \rightarrow aA$, $A \rightarrow Bc$, $B \rightarrow b$
- Example parse
 - $abc \Rightarrow aBc \Rightarrow aA \Rightarrow S$
 - Derivation happens in reverse
- Something to look forward to in CMSC 430
- Complicated to use; requires tool support
 - *Bison, yacc* produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

Goal
- Determine if we can produce the string to be parsed from the grammar's start symbol

Approach
- Recursively replace nonterminal with RHS of production

At each step, we'll keep track of two facts
- What tree node are we trying to match?
- What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

- If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue

- If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead

- Otherwise fail with a parsing error
Parsing Example

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

- Here \(n \) is an integer and \(\text{id} \) is an identifier

► One input might be

- \(\{ x = 3; \{ y = 4; \}; \} \)
- This would get turned into a list of tokens
 \(\{ x = 3 ; \{ y = 4 ; \} ; \} \)
- And we want to turn it into a parse tree
Parsing Example (cont.)

E → id = n | { L }
L → E ; L | ε

{ x = 3 ; { y = 4 ; } ; }

lookahead
Recursive Descent Parsing (cont.)

- Key step
 - Choosing which production should be selected

- Two approaches
 - Backtracking
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

- **Motivating example**
 - The lookahead is \(x \)
 - Given grammar \(S \rightarrow xyz \mid abc \)
 - Select \(S \rightarrow xyz \) since 1st terminal in RHS matches \(x \)
 - Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 - Select \(S \rightarrow A \), since \(A \) can derive string beginning with \(x \)

- **In general**
 - Choose a production that can derive a sentential form beginning with the lookahead
 - Need to know what terminal may be *first* in any sentential form derived from a nonterminal / production
First Sets

Definition

- **First(γ)**, for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to.
- We’ll use this to decide what production to apply.

Examples

- Given grammar $S \rightarrow xyz | abc$
 - $First(xyz) = \{ x \}$, $First(abc) = \{ a \}$
 - $First(S) = First(xyz) \cup First(abc) = \{ x, a \}$

- Given grammar $S \rightarrow A | B \quad A \rightarrow x | y \quad B \rightarrow z$
 - $First(x) = \{ x \}$, $First(y) = \{ y \}$, $First(A) = \{ x, y \}$
 - $First(z) = \{ z \}$, $First(B) = \{ z \}$
 - $First(S) = \{ x, y, z \}$
Calculating First(\(\gamma\))

- For a terminal \(a\)
 - \(\text{First}(a) = \{ a \}\)

- For a nonterminal \(N\)
 - If \(N \rightarrow \varepsilon\), then add \(\varepsilon\) to \(\text{First}(N)\)
 - If \(N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n\), then (note the \(\alpha_i\) are all the symbols on the right side of one single production):
 - Add \(\text{First}(\alpha_1 \alpha_2 \ldots \alpha_n)\) to \(\text{First}(N)\), where \(\text{First}(\alpha_1 \alpha_2 \ldots \alpha_n)\) is defined as
 - \(\text{First}(\alpha_1)\) if \(\varepsilon \not\in \text{First}(\alpha_1)\)
 - Otherwise \((\text{First}(\alpha_1) – \varepsilon) \cup \text{First}(\alpha_2 \ldots \alpha_n)\)
 - If \(\varepsilon \in \text{First}(\alpha_i)\) for all \(i, 1 \leq i \leq k\), then add \(\varepsilon\) to \(\text{First}(N)\)
First() Examples

\[
E \rightarrow id = n \mid \{ L \} \\
L \rightarrow E \mid L \mid \varepsilon
\]

First(id) = \{ id \}
First("=") = \{ ",=" \}
First(n) = \{ n \}
First("\{"= \{ ",\} \}
First("\}"= \{ ",\} \}
First(";"= \{ ",;" \}
First(E) = \{ id, ",\} \}
First(L) = \{ id, ",", \}

\[
E \rightarrow id = n \mid \{ L \} \mid \varepsilon \\
L \rightarrow E \mid L
\]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("\{"= \{ "\} \}
First("\}"= \{ "\} \}
First(";"= \{ ";" \}
First(E) = \{ id, "\}, \varepsilon \}
First(L) = \{ id, "\", ",;" \}
Recursive Descent Parser Implementation

- For terminals, create function `match(a)`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Otherwise fails with a parse error if lookahead is not `a`
 - In algorithm descriptions, consider `parse_a`, `parse_term(a)` to be aliases for `match(a)`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
The body of `parse_N` for a nonterminal `N` does the following:

- Let `N \rightarrow \beta_1 | ... | \beta_k` be the productions of `N`
 - Here `\beta_i` is the entire right side of a production - a sequence of terminals and nonterminals
- Pick the production `N \rightarrow \beta_i` such that the lookahead is in `First(\beta_i)`
 - It must be that `First(\beta_i) \cap First(\beta_j) = \emptyset` for `i \neq j`
 - If there is no such production, but `N \rightarrow \epsilon` then return
 - Otherwise fail with a parse error
- Suppose `\beta_i = \alpha_1 \alpha_2 ... \alpha_n`. Then call `parse_\alpha_1() ; ... ; parse_\alpha_n()` to match the expected right-hand side, and return
Parser Implementation (cont.)

- Parse is built on procedure calls
- Procedures may be (mutually) recursive
Recursive Descent Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$

- Parser

```c
parse_S( ) {
    if (lookahead == “x”) {
        match(“x”); match(“y”); match(“z”); // S → xyz
    }
    else if (lookahead == “a”) {
        match(“a”); match(“b”); match(“c”); // S → abc
    }
    else error( );
}
```
Recursive Descent Parser

- Given grammar: $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - $\text{First}(A) = \{ x, y \}$, $\text{First}(B) = \{ z \}$

- Parser
  ```c
  parse_S() {
      if (((lookahead == "x") ||
            (lookahead == "y"))
          parse_A(); // S \rightarrow A
      else if (lookahead == "z")
          parse_B(); // S \rightarrow B
      else error();
  }

  parse_A() {
      if (lookahead == "x")
          match("x"); // A \rightarrow x
      else if (lookahead == "y")
          match("y"); // A \rightarrow y
      else error();
  }

  parse_B() {
      if (lookahead == "z")
          match("z"); // B \rightarrow z
      else error();
  }
  ```
Example

\[
E \to id = n \mid \{ L \} \\
L \to E ; L \mid \epsilon
\]

First(E) = \{ id, "{" \}

\[
\text{parse}_E() \\
\begin{align*}
\text{if (lookahead == "id")} & \{ \\
& \text{match("id");} \\
& \text{match("="); } \quad \text{\(E \to id = n\)} \\
& \text{match("n");} \\
\} \\
\text{else if (lookahead == "{")} & \{ \\
& \text{match("{"; \quad \text{\(E \to \{ L \}\)} } \\
& \text{parse}_L(); \\
& \text{match("}")); \\
\} \\
\text{else error();}
\end{align*}
\]

\[
\text{parse}_L() \\
\begin{align*}
\text{if ((lookahead == "id") || (lookahead == "{"))} & \{ \\
& \text{parse}_E(); \\
& \text{match(";"}; \quad \text{\(L \to E ; L\)} \\
& \text{parse}_L(); \\
\} \\
\text{else ;} \quad \text{\(L \to \epsilon\)}
\end{align*}
\]
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree

Examples

- Grammar

 \[S \rightarrow xyz \]

 \[S \rightarrow abc \]

- String “xyz”

 \[
 \text{parse}_S() \quad \text{match(“x”)}
 \]
 \[
 \text{match(“y”)}
 \]
 \[
 \text{match(“z”)}
 \]

- Grammar

 \[S \rightarrow A \mid B \]

 \[A \rightarrow x \mid y \]

 \[B \rightarrow z \]

- String “x”

 \[
 \text{parse}_S() \quad \text{match(“x”)}
 \]
 \[
 \text{parse}_A() \quad \text{match(“x”)}
 \]
 \[
 \text{B} \quad \text{z}
 \]
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ϵ
 - Possible infinite recursion

- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting FIRST Sets

Consider parsing the grammar \(E \rightarrow ab \mid ac \)

- First(ab) = a, Parser cannot choose between
- First(ac) = a, RHS based on lookahead!

Parser fails whenever \(A \rightarrow \alpha_1 \mid \alpha_2 \) and

- First(\(\alpha_1 \)) \(\cap \) First(\(\alpha_2 \)) \(\neq \) \(\varepsilon \) or \(\emptyset \)

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

- **Given grammar**
 - $A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta$

- **Rewrite grammar as**
 - $A \rightarrow xL \mid \beta$
 - $L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$

- **Repeat as necessary**

- **Examples**
 - $S \rightarrow ab \mid ac$ \quad \Rightarrow S \rightarrow aL \quad L \rightarrow b \mid c$
 - $S \rightarrow abcA \mid abB \mid a$ \quad \Rightarrow S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \epsilon$
 - $L \rightarrow bcA \mid bB \mid \epsilon$ \quad \Rightarrow L \rightarrow bL' \mid \epsilon \quad L' \rightarrow cA \mid B$
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to choose between productions

Example

- Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```c
parse_E() {
    match("a"); // common prefix
    if (lookahead == "+") { // E → a+b
        match("+"); match("b");
    }
    if (lookahead == "*") { // E → a*b
        match("*"); match("b");
    } else { } // E → a
}
```
Left Recursion

Consider grammar \(S \rightarrow Sa \mid \varepsilon \)

- Try writing parser
  ```
  parse_S() {
      if (lookahead == "a") {
          parse_S();
          match("a");  // S \rightarrow Sa
      }
      else { }
  }
  ```

- Body of `parse_S()` has an infinite loop
 - if (lookahead = "a") then parse_S()

- Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar \(S \rightarrow aS | \varepsilon \)

- Again, \(\text{First}(aS) = a \)
- Try writing parser

```c
void parse_S() {
    if (lookahead == "a") {
        match("a");
        parse_S();  // S \rightarrow aS
    }
    else {
    }
}
```

- Will `parse_S()` infinite loop?
 - Invoking `match()` will advance lookahead, eventually stop
- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

Given grammar
- \(A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta \)
 - \(\beta \) must exist or derivation will not yield string

Rewrite grammar as (repeat as needed)
- \(A \rightarrow \beta L \)
- \(L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \varepsilon \)

Replaces left recursion with right recursion

Examples
- \(S \rightarrow Sa \mid \varepsilon \quad \Rightarrow S \rightarrow L \quad L \rightarrow aL \mid \varepsilon \)
- \(S \rightarrow Sa \mid Sb \mid c \quad \Rightarrow S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \varepsilon \)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.

Parse tree:
```
   E
  /|
 / E
/  *
|  |
|  c
|  (E)
```

AST:
```
  *
 /|
/ c
/  +
/  b
/   d
```

The parse tree is transformed into an AST by removing unnecessary details and focusing on the structure of the expression.
Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language

- Note that grammars describe trees
- So do OCaml datatypes (which we’ll see later)
- $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$

```
        *
       /  \     
      c    +  
     /     /  
    b      d
```
Producing an AST

- To produce an AST, we can modify the `parse()` functions to construct the AST along the way
 - `match(a)` returns an AST node (leaf) for `a`
 - `Parse_A` returns an AST node for `A`
 - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

```c
Node parse_S() {
    Node n1, n2;
    if (lookahead == "a") {
        n1 = match("a");
        n2 = parse_A();
        return new Node(n1, n2);
    }
    return new Node("S");
}
```
The Compilation Process

- Lexing
 - regexps
 - DFAs
- Parsing
 - CFGs
 - PDAs
- AST
 - (may not actually be constructed)
- Intermediate Code Generation
- Optimization

source program → Compiler → target program