CMSC 330: Organization of Programming Languages

Lambda Calculus
Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions
 - Use currying or tuples
 - Loops
 - Use recursion
 - Side effects
 - Use functional programming

- So what language features are really needed?
Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function

- A programming language is **Turing complete** if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language

- Most powerful programming language possible
 - Since Turing machine is most powerful automaton
Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete

- Helps illustrate important
 - Language features
 - Algorithms

- One solution
 - Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washington DC!)

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…
Lambda Expressions

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable} \]
 \[\mid \lambda x . e \quad \text{function} \]
 \[\mid e \, e \quad \text{function application} \]

- \(\lambda x . e \) is like \((\text{fun } x \rightarrow e)\) in OCaml

- That’s it! Nothing but higher-order functions
Three Conveniences

- Syntactic sugar for local declarations
 - `let x = e1 in e2` is short for `(λx.e2) e1`

- Scope of `λ` extends as far right as possible
 - Subject to scope delimited by parentheses
 - `λx. λy.x y` is same as `λx.(λy.(x y))`

- Function application is left-associative
 - `x y z` is `(x y) z`
 - Same rule as OCaml
Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them
- To evaluate \((\lambda x. e_1) \ e_2\)
 - Evaluate \(e_1\) with \(x\) replaced by \(e_2\)
- This application is called beta-reduction
 - \((\lambda x. e_1) \ e_2 \rightarrow e_1[x:=e_2]\)
 - \(e_1[x:=e_2]\) is \(e_1\) with occurrences of \(x\) replaced by \(e_2\)
 - This operation is called substitution
 - Slightly different than the environments we saw for OCaml
 - Do syntactic substitutions to replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur anywhere in a term
Beta Reduction Example

\[(\lambda x.\lambda z. x\ z)\ y\]
\[\to (\lambda x.(\lambda z.(x\ z)))\ y\] // since \(\lambda\) extends to right
\[\to (\lambda x.(\lambda z.(x\ z)))\ y\] // apply \((\lambda x.e1)\ e2 \to e1[x:=e2]\n\[\to \lambda z.(y\ z)\] // where \(e1 = \lambda z.(x\ z)\), \(e2 = y\)

\[\to \lambda z.(y\ z)\] // final result

Equivalent OCaml code

\[\text{(fun } x \to \text{(fun } z \to \text{(x } z)\))\ y \to \text{fun } z \to \text{(y } z)\]
Lambda Calculus Examples

- $(\lambda x. x) \ z \rightarrow z$
- $(\lambda x. y) \ z \rightarrow y$
- $(\lambda x. x \ y) \ z \rightarrow z \ y$
 - A function that applies its argument to y
Lambda Calculus Examples (cont.)

- \((\lambda x.x \, y) \, (\lambda z.z) \rightarrow (\lambda z.z) \, y \rightarrow y\)

- \((\lambda x.\lambda y.x \, y) \, z \rightarrow \lambda y.z \, y\)

 - A curried function of two arguments
 - Applies its first argument to its second

- \((\lambda x.\lambda y.x \, y) \, (\lambda z.zz) \, x \rightarrow (\lambda y.(\lambda z.zz)y) \, x \rightarrow (\lambda z.zz) \, x \rightarrow xx\)
Defining Substitution

- Use recursion on structure of terms
 - \(x[x:=e] = e\) // Replace \(x\) by \(e\)
 - \(y[x:=e] = y\) // \(y\) is different than \(x\), so no effect
 - \((e_1 \, e_2)[x:=e] = (e_1[x:=e]) \, (e_2[x:=e])\) // Substitute both parts of application
 - \((\lambda x.\, e')[x:=e] = \lambda x.\, e'\)
 - In \(\lambda x.\, e'\), the \(x\) is a parameter, and thus a local variable that is different from other \(x\)'s.
 - So the substitution has no effect in this case, since the \(x\) being substituted for is different from the parameter \(x\) that is in \(e'\)
 - \((\lambda y.\, e')[x:=e] = ?\)
 - The parameter \(y\) does not share the same name as \(x\), the variable being substituted for
 - Is \(\lambda y.\, (e'[x:=e])\) correct?
Lambda calculus uses **static scoping**

Consider the following

- \((\lambda x.x (\lambda x.x))\) \(z \rightarrow ?\)
 - The rightmost "\(x\)" refers to the second binding
- This is a function that
 - Takes its argument and applies it to the identity function

This function is "the same" as \((\lambda x.x (\lambda y.y))\)

- Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion
- \(\text{Ex. } \lambda x.x = \lambda y.y = \lambda z.z \quad \lambda y.\lambda x.y = \lambda z.\lambda x.z\)
How about the following?

- \((\lambda x.\lambda y.x\ y)\ y\) → ?
- When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
- I.e., \((\lambda x.\lambda y.x\ y)\ y\ ≠ \lambda y.y\ y\)

Solution

- \((\lambda x.\lambda y.x\ y)\) is “the same” as \((\lambda x.\lambda z.x\ z)\)
 - Due to alpha conversion
- So change \((\lambda x.\lambda y.x\ y)\ y\) to \((\lambda x.\lambda z.x\ z)\ y\) first
 - Now \((\lambda x.\lambda z.x\ z)\ y\ → \lambda z.y\ z\)
Completing the Definition of Substitution

- Recall: we need to define $$(\lambda y . e')[x:=e]$$
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable w that does not appear in e' or e
 (Such a w is called fresh)
 - Replace all occurrences of y in e' by w.
 - Then replace all occurrences of x in e' by e!

- Formally:
 $$(\lambda y . e')[x:=e] = \lambda w . ((e' [y:=w]) [x:=e]) \text{ (} w \text{ is fresh})$$
Beta-Reduction, Again

Whenever we do a step of beta reduction
 • \((\lambda x. e_1) e_2 \rightarrow e_1[x:=e_2]\)
 • We must alpha-convert variables as necessary
 • Usually performed implicitly (w/o showing conversion)

Examples
 • \((\lambda x. \lambda y. x \ y) \ y = (\lambda x. \lambda z. x \ z) \ y \rightarrow \lambda z. y \ z\) // \(y \rightarrow z\)
 • \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda y. y \ (\lambda x. x)) \ z \rightarrow z \ (\lambda x. x)\) // \(x \rightarrow y\)
 • \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda x. x \ (\lambda y. y)) \ z \rightarrow z \ (\lambda y. y)\) // \(x \rightarrow y\)
Encodings

- The lambda calculus is Turing complete

- Means we can encode any computation we want
 - If we’re sufficiently clever...

- Examples
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 - Looping
Booleans

- Church’s encoding of mathematical logic
 - true = λx.λy.x
 - false = λx.λy.y
 - if a then b else c
 - Defined to be the λ expression: a b c

- Examples
 - if true then b else c → (λx.λy.x) b c → (λy.b) c → b
 - if false then b else c → (λx.λy.y) b c → (λy.y) c → c
Booleans (cont.)

- Other Boolean operations
 - $\text{not} = \lambda x.((x \text{ false}) \text{ true})$
 - $\text{not } x = \text{if } x \text{ then false else true}$
 - $\text{not true } \rightarrow (\lambda x. (x \text{ false}) \text{ true}) \text{ true } \rightarrow ((\text{true false}) \text{ true}) \rightarrow \text{false}$
 - $\text{and} = \lambda x.\lambda y.((x \text{ y}) \text{ false})$
 - $\text{and } x \text{ y } = \text{if } x \text{ then y else false}$
 - $\text{or} = \lambda x.\lambda y.((x \text{ true}) \text{ y})$
 - $\text{or } x \text{ y } = \text{if } x \text{ then true else y}$

- Given these operations
 - Can build up a logical inference system
Pairs

- Encoding of a pair a, b
 - $(a, b) = \lambda x.\text{if } x \text{ then } a \text{ else } b$
 - $\text{fst} = \lambda f. f \text{ true}$
 - $\text{snd} = \lambda f. f \text{ false}$

- Examples
 - $\text{fst} (a, b) = (\lambda f. f \text{ true}) (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow$
 $(\lambda x.\text{if } x \text{ then } a \text{ else } b) \text{ true} \rightarrow$
 if true then a else $b \rightarrow a$
 - $\text{snd} (a, b) = (\lambda f. f \text{ false}) (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow$
 $(\lambda x.\text{if } x \text{ then } a \text{ else } b) \text{ false} \rightarrow$
 if false then a else $b \rightarrow b$
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f.\lambda y. y$
 - $1 = \lambda f.\lambda y. f \ y$
 - $2 = \lambda f.\lambda y. f \ (f \ y)$
 - $3 = \lambda f.\lambda y. f \ (f \ (f \ y))$

 i.e., $n = \lambda f.\lambda y. <\text{apply } f \ n \ \text{times to } y>$
 - Formally: $n+1 = \lambda f.\lambda y. f \ (n \ f \ y)$

(Alonzo Church, of course)
Operations On Church Numerals

- **Successor**
 - $\text{succ} = \lambda z. \lambda f. \lambda y. f (z f y)$
 - $0 = \lambda f. \lambda y. y$
 - $1 = \lambda f. \lambda y. f y$

- **Example**
 - $\text{succ } 0 =$
 - $(\lambda z. \lambda f. \lambda y. f (z f y)) (\lambda f. \lambda y. y) \rightarrow$
 - $\lambda f. \lambda y. f ((\lambda f. \lambda y. y) f y) \rightarrow$
 - $\lambda f. \lambda y. f ((\lambda y. y) y) \rightarrow$
 - $\lambda f. \lambda y. f y \rightarrow$ Since $(\lambda x. y) z \rightarrow y$
 - $\lambda f. \lambda y. f y$
 - $= 1$
Operations On Church Numerals (cont.)

- **IsZero?**
 - \(\text{iszero} = \lambda z. z \ (\lambda y. \text{false}) \text{ true} \)
 - This is equivalent to \(\lambda z. ((z \ (\lambda y. \text{false})) \text{ true}) \)

- **Example**
 - \(\text{iszero } 0 = \)
 - \((\lambda z. z \ (\lambda y. \text{false}) \text{ true}) \ (\lambda f. \lambda y. y) \rightarrow \)
 - \((\lambda f. \lambda y. y) \ (\lambda y. \text{false}) \text{ true} \rightarrow \)
 - \((\lambda y. y) \text{ true} \rightarrow \)
 - Since \((\lambda x. y) z \rightarrow y \)
 - true
 - \(0 = \lambda f. \lambda y. y \)
Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations

- Addition
 - \(M + N = \lambda x.\lambda y.(M x)((N x) y) \)
 - Equivalently: \(+ = \lambda M.\lambda N.\lambda x.\lambda y.(M x)((N x) y) \)
 - In prefix notation \((+ M N) \)

- Multiplication
 - \(M * N = \lambda x.(M (N x)) \)
 - Equivalently: \(* = \lambda M.\lambda N.\lambda x.(M (N x)) \)
 - In prefix notation \((* M N) \)
Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1+1 = \lambda x.\lambda y.((1\ x)\ y) = $
 - $\lambda x.\lambda y.((\lambda x.\lambda y.\lambda x\ y)\ x)(((\lambda x.\lambda y.\lambda x\ y)\ x)\ y) \rightarrow$
 - $\lambda x.\lambda y.((\lambda y.\lambda x\ y)(((\lambda y.\lambda x\ y)\ x)\ y)) \rightarrow$
 - $\lambda x.\lambda y.((\lambda y.\lambda x\ y)((\lambda y.\lambda x\ y))\ y) \rightarrow$
 - $\lambda x.\lambda y.((\lambda y.\lambda x\ y)\ y) \rightarrow$
 - $\lambda x.\lambda y.\lambda x\ ((\lambda y.\lambda x\ y)\ y) \rightarrow$
 - $\lambda x.\lambda y.\lambda x\ (x\ y) = 2$

- With these definitions
 - Can build a theory of arithmetic

- $1 = \lambda f.\lambda y. f\ y$
- $2 = \lambda f.\lambda y. f\ (f\ y)$

Many implicit alpha conversions
Looping & Recursion

- Define $D = \lambda x. x \ x$, then
 - $D \ D = (\lambda x. x \ x) \ (\lambda x. x \ x) \rightarrow (\lambda x. x \ x) \ (\lambda x. x \ x) = D \ D$

- So $D \ D$ is an infinite loop
 - In general, self application is how we get looping
The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

Then

\[Y F = \]

\[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \rightarrow \]

\[(\lambda x. F (x x)) (\lambda x. F (x x)) \rightarrow \]

\[F ((\lambda x. F (x x)) (\lambda x. F (x x))) \]

\[= F (Y F) \]

Y F is a \textit{fixed point} (aka “fixpoint”) of F

Thus \[Y F = F (Y F) = F (F (Y F)) = ... \]

- We can use Y to achieve recursion for F
Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f (n-1)) \]

- The second argument to \text{fact} is the integer
- The first argument is the function to call in the body
 - We’ll use \text{Y} to make this recursively call \text{fact}

\[(\text{Y fact}) 1 = (\text{fact} (\text{Y fact})) 1\]

\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \ast ((\text{Y fact}) 0)\]

\[\rightarrow 1 \ast ((\text{Y fact}) 0)\]

\[\rightarrow 1 \ast (\text{fact} (\text{Y fact}) 0)\]

\[\rightarrow 1 \ast (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \ast ((\text{Y fact}) (-1)))\]

\[\rightarrow 1 \ast 1 \rightarrow 1\]
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 → thousands of function calls)
 - Pretty large (10000 + 1 → hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives
The Need For Types

- Consider the **untyped** lambda calculus
 - false = \(\lambda x.\lambda y.y \)
 - 0 = \(\lambda x.\lambda y.y \)

- Since everything is encoded as a function...
 - We can easily misuse terms...
 - false 0 → \(\lambda y.y \)
 - if 0 then ...

...because everything evaluates to some function

- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words
Simply-Typed Lambda Calculus

- \(e ::= n \mid x \mid \lambda x: t . e \mid e \ e \)
 - Added integers \(n \) as primitives
 - Need at least two distinct types (integer & function)…
 - …to have type errors
 - Functions now include the type of their argument
Simply-Typed Lambda Calculus (cont.)

- \(t ::= \text{int} | t \rightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t_1 \rightarrow t_2 \) is the type of a function
 - That takes arguments of type \(t_1 \) and returns result of type \(t_2 \)
 - \(t_1 \) is the domain and \(t_2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions
Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work